We present ScIRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following instances for training and evaluation, covering 54 tasks. These tasks span five core scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. ScIRIFF is unique in being the only entirely expert-written, high-quality instruction-following dataset designed for extracting and synthesizing information from research literature across diverse scientific fields. It features complex instructions with long input contexts, detailed task descriptions, and structured outputs. To demonstrate its utility, we finetune a series of large language models (LLMs) using a mix of general domain and ScIRIFF instructions. On nine out-of-distribution held-out tasks (referred to as SciRIFF-Eval), LLMs finetuned on SciRIFF achieve 70.6% average improvement over our baselines trained only on general-domain instructions. ScIRIFF facilitates the development and evaluation of LLMs to help researchers navigate the rapidly growing body of scientific literature.
Scientific literature is typically dense, requiring significant background knowledge and deep comprehension for effective engagement. We introduce SciDQA, a new dataset for reading comprehension that challenges language models to deeply understand scientific articles, consisting of 2,937 QA pairs. Unlike other scientific QA datasets, SciDQA sources questions from peer reviews by domain experts and answers by paper authors, ensuring a thorough examination of the literature. We enhance the dataset’s quality through a process that carefully decontextualizes the content, tracks the source document across different versions, and incorporates a bibliography for multi-document question-answering. Questions in SciDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials, and require multi-document reasoning. We evaluate several open-source and proprietary LLMs across various configurations to explore their capabilities in generating relevant and factual responses, as opposed to simple review memorization. Our comprehensive evaluation, based on metrics for surface-level and semantic similarity, highlights notable performance discrepancies. SciDQA represents a rigorously curated, naturally derived scientific QA dataset, designed to facilitate research on complex reasoning within the domain of question answering for scientific texts.
The ever-increasing volume of paper submissions makes it difficult to stay informed about the latest state-of-the-art research. To address this challenge, we introduce LEGOBench, a benchmark for evaluating systems that generate scientific leaderboards. LEGOBench is curated from 22 years of preprint submission data on arXiv and more than 11k machine learning leaderboards on the PapersWithCode portal. We present a language model-based and four graph-based leaderboard generation task configuration. We evaluate popular encoder-only scientific language models as well as decoder-only large language models across these task configurations. State-of-the-art models showcase significant performance gaps in automatic leaderboard generation on LEGOBench. The code is available on GitHub and the dataset is hosted on OSF.
Research papers are long documents that contain information about various aspects such as background, prior work, methodology, and results. Existing works on scientific document representation learning only leverage the title and abstract of the paper. We present CoSAEmb, a model that learns representations from the full text of 97402 scientific papers from the S2ORC dataset. We present a novel supervised contrastive training framework for long documents using triplet loss and margin gradation. Our framework can be used to learn representations of long documents with any existing encoder-only transformer model without retraining it from scratch. CoSAEmb shows improved performance on information retrieval from the paper’s full text in comparison to models trained only on paper titles and abstracts. We also evaluate CoSAEmb on SciRepEval and CSFCube benchmarks, showing comparable performance with existing state-of-the-art models.
Language models are increasingly becoming popular in AI-powered scientific IR systems. This paper evaluates popular scientific language models in handling (i) short-query texts and (ii) textual neighbors. Our experiments showcase the inability to retrieve relevant documents for a short-query text even under the most relaxed conditions. Additionally, we leverage textual neighbors, generated by small perturbations to the original text, to demonstrate that not all perturbations lead to close neighbors in the embedding space. Further, an exhaustive categorization yields several classes of orthographically and semantically related, partially related and completely unrelated neighbors. Retrieval performance turns out to be more influenced by the surface form rather than the semantics of the text.