Shinnosuke Nozue
2025
Enhancing Persuasive Dialogue Agents by Synthesizing Cross‐Disciplinary Communication Strategies
Shinnosuke Nozue
|
Yuto Nakano
|
Yotaro Watanabe
|
Meguru Takasaki
|
Shoji Moriya
|
Reina Akama
|
Jun Suzuki
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
Current approaches to developing persuasive dialogue agents often rely on a limited set of predefined persuasive strategies that fail to capture the complexity of real-world interactions. We applied a cross-disciplinary approach to develop a framework for designing persuasive dialogue agents that draws on proven strategies from social psychology, behavioral economics, and communication theory. We validated our proposed framework through experiments on two distinct datasets: the Persuasion for Good dataset, which represents a specific in-domain scenario, and the DailyPersuasion dataset, which encompasses a wide range of scenarios. The proposed framework achieved strong results for both datasets and demonstrated notable improvement in the persuasion success rate as well as promising generalizability. Notably, the proposed framework also excelled at persuading individuals with initially low intent, which addresses a critical challenge for persuasive dialogue agents.
2024
A Multimodal Dialogue System to Lead Consensus Building with Emotion-Displaying
Shinnosuke Nozue
|
Yuto Nakano
|
Shoji Moriya
|
Tomoki Ariyama
|
Kazuma Kokuta
|
Suchun Xie
|
Kai Sato
|
Shusaku Sone
|
Ryohei Kamei
|
Reina Akama
|
Yuichiroh Matsubayashi
|
Keisuke Sakaguchi
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue
The evolution of large language models has enabled fluent dialogue, increasing interest in the coexistence of humans and avatars. An essential aspect of achieving this coexistence involves developing sophisticated dialogue systems that can influence user behavior. In this background, we propose an effective multimodal dialogue system designed to promote consensus building with humans. Our system employs a slot-filling strategy to guide discussions and attempts to influence users with suggestions through emotional expression and intent conveyance via its avatar. These innovations have resulted in our system achieving the highest performance in a competition evaluating consensus building between humans and dialogue systems. We hope that our research will promote further discussion on the development of dialogue systems that enhance consensus building in human collaboration.
Search
Fix author
Co-authors
- Reina Akama 2
- Shoji Moriya 2
- Yuto Nakano 2
- Tomoki Ariyama 1
- Ryohei Kamei 1
- show all...