Shijie Wang


2025

pdf bib
Knowledge Graph Retrieval-Augmented Generation for LLM-based Recommendation
Shijie Wang | Wenqi Fan | Yue Feng | Lin Shanru | Xinyu Ma | Shuaiqiang Wang | Dawei Yin
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recommender systems have become increasingly vital in our daily lives, helping to alleviate the problem of information overload across various user-oriented online services. The emergence of Large Language Models (LLMs) has yielded remarkable achievements, demonstrating their potential for the development of next-generation recommender systems. Despite these advancements, LLM-based recommender systems face inherent limitations stemming from their LLM backbones, particularly issues of hallucinations and the lack of up-to-date and domain-specific knowledge.Recently, Retrieval-Augmented Generation (RAG) has garnered significant attention for addressing these limitations by leveraging external knowledge sources to enhance the understanding and generation of LLMs. However, vanilla RAG methods often introduce noise and neglect structural relationships in knowledge, limiting their effectiveness in LLM-based recommendations. To address these limitations, we propose to retrieve high-quality and up-to-date structure information from the knowledge graph (KG) to augment recommendations. Specifically, our approach develops a retrieval-augmented framework, termed K-RagRec, that facilitates the recommendation generation process by incorporating structure information from the external KG. Extensive experiments have been conducted to demonstrate the effectiveness of our proposed method.

pdf bib
Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Jie Chen | Jinhao Jiang | Yingqian Min | Zican Dong | Shijie Wang | Xin Zhao | Ji-Rong Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions—termed stickers—which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

pdf bib
RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
Jinhao Jiang | Jiayi Chen | Junyi Li | Ruiyang Ren | Shijie Wang | Xin Zhao | Yang Song | Tao Zhang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose RAG-Star, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose a retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods. Our codes and data are publicly available at https://github.com/RUCAIBox/RAG-Star.