Shahrad Mohammadzadeh


2025

pdf bib
Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
Shahrad Mohammadzadeh | Juan David Guerra | Marco Bonizzato | Reihaneh Rabbany | Golnoosh Farnadi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) become increasingly prevalent, concerns about their reliability, particularly due to hallucinations - factually inaccurate or irrelevant outputs - have grown. Our research investigates the relationship between the uncertainty in training dynamics and the emergence of hallucinations. Using models from the Pythia suite and several hallucination detection metrics, we analyze hallucination trends and identify significant variance during training. To address this, we propose Sensitivity Dropout (SenD), a novel training protocol designed to reduce hallucination variance during training by deterministically dropping embedding indices with significant variability. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This metric is integrated into our training protocol, allowing SenD to be both computationally scalable and effective at reducing hallucination variance. SenD improves test-time reliability of Pythia and Meta’s Llama models by up to 17% and enhances factual accuracy in Wikipedia, Medical, Legal, and Coding domains without affecting downstream task performance.

pdf bib
Jailbreak-Tuning: Models Efficiently Learn Jailbreak Susceptibility
Brendan Murphy | Dillon Bowen | Shahrad Mohammadzadeh | Tom Tseng | Julius Broomfield | Adam Gleave | Kellin Pelrine
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

AI systems are rapidly advancing in capability, and frontier model developers broadly acknowledge the need for safeguards against serious misuse. However, this paper demonstrates that fine-tuning, whether via open weights or closed fine-tuning APIs, can produce helpful-only models with safeguards destroyed. In contrast to prior work which is blocked by modern moderation systems or achieved only partial removal of safeguards or degraded output quality, our jailbreak-tuning method teaches models to generate detailed, high-quality responses to arbitrary harmful requests. For example, OpenAI, Google, and Anthropic models will fully comply with requests for CBRN assistance, executing cyberattacks, and other criminal activity. We further show that backdoors can increase not only the stealth but also the severity of attacks. Stronger jailbreak prompts become even more effective in fine-tuning attacks, linking attacks and potentially defenses in the input and weight spaces. Not only are current models vulnerable, more recent ones also appear to be becoming even more vulnerable to these attacks, underscoring the urgent need for tamper-resistant safeguards. Until such safeguards are discovered, companies and policymakers should view the release of any fine-tunable model as simultaneously releasing its evil twin: equally capable as the original model, and usable for any malicious purpose within its capabilities.