2025
pdf
bib
abs
Persona Dynamics: Unveiling the Impact of Persona Traits on Agents in Text-Based Games
Seungwon Lim
|
Seungbeen Lee
|
Dongjun Min
|
Youngjae Yu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent’s actions exhibit, and (ii) we integrate the personality profiles directly into the agent’s policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent’s action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
pdf
bib
abs
VisEscape: A Benchmark for Evaluating Exploration-driven Decision-making in Virtual Escape Rooms
Seungwon Lim
|
Sungwoong Kim
|
Jihwan Yu
|
Sungjae Lee
|
Jiwan Chung
|
Youngjae Yu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Escape rooms present a unique cognitive challenge that demands exploration-driven planning: with the sole instruction to escape the room, players must actively search their environment, collecting information, and finding solutions through repeated trial and error. Motivated by this, we introduce VisEscape, a benchmark of 20 virtual escape rooms specifically designed to evaluate AI models under these challenging conditions, where success depends not only on solving isolated puzzles but also on iteratively constructing and refining spatial-temporal knowledge of a dynamically changing environment. On VisEscape, we observe that even state-of-the-art multi-modal models generally fail to escape the rooms, showing considerable variation in their progress and problem-solving approaches. We find that integrating memory management and reasoning contributes to efficient exploration and enables successive hypothesis formulation and testing, thereby leading to significant improvements in dynamic and exploration-driven environments.
pdf
bib
abs
Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
Seungbeen Lee
|
Seungwon Lim
|
Seungju Han
|
Giyeong Oh
|
Hyungjoo Chae
|
Jiwan Chung
|
Minju Kim
|
Beong-woo Kwak
|
Yeonsoo Lee
|
Dongha Lee
|
Jinyoung Yeo
|
Youngjae Yu
Findings of the Association for Computational Linguistics: NAACL 2025
Recent advancements in Large Language Models (LLMs) have led to their adaptation in various domains as conversational agents. We wonder: can personality tests be applied to these agents to analyze their behavior, similar to humans? We introduce TRAIT, a new benchmark consisting of 8K multi-choice questions designed to assess the personality of LLMs. TRAIT is built on two psychometrically validated small human questionnaires, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC-10X knowledge graph to a variety of real-world scenarios. TRAIT also outperforms existing personality tests for LLMs in terms of reliability and validity, achieving the highest scores across four key metrics: Content Validity, Internal Validity, Refusal Rate, and Reliability. Using TRAIT, we reveal two notable insights into personalities of LLMs: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (e.g., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
2024
pdf
bib
abs
Can visual language models resolve textual ambiguity with visual cues? Let visual puns tell you!
Jiwan Chung
|
Seungwon Lim
|
Jaehyun Jeon
|
Seungbeen Lee
|
Youngjae Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Humans possess multimodal literacy, allowing them to actively integrate information from various modalities to form reasoning. Faced with challenges like lexical ambiguity in text, we supplement this with other modalities, such as thumbnail images or textbook illustrations. Is it possible for machines to achieve a similar multimodal understanding capability?In response, we present Understanding Pun with Image Explanations (UNPIE), a novel benchmark designed to assess the impact of multimodal inputs in resolving lexical ambiguities. Puns serve as the ideal subject for this evaluation due to their intrinsic ambiguity. Our dataset includes 1,000 puns, each accompanied by an image that explains both meanings. We pose three multimodal challenges with the annotations to assess different aspects of multimodal literacy; Pun Grounding, Disambiguation, and Reconstruction. The results indicate that various Socratic Models and Visual-Language Models improve over the text-only models when given visual context, particularly as the complexity of the tasks increases.