Segun Aroyehun
2025
Linguistic and Embedding-Based Profiling of Texts Generated by Humans and Large Language Models
Sergio E. Zanotto
|
Segun Aroyehun
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The rapid advancements in large language models (LLMs) have significantly improved their ability to generate natural language, making texts generated by LLMs increasingly indistinguishable from human-written texts. While recent research has primarily focused on using LLMs to classify text as either human-written or machine-generated texts, our study focuses on characterizing these texts using a set of linguistic features across different linguistic levels such as morphology, syntax, and semantics. We select a dataset of human-written and machine-generated texts spanning 8 domains and produced by 11 different LLMs. We calculate different linguistic features such as dependency length and emotionality, and we use them for characterizing human-written and machine-generated texts along with different sampling strategies, repetition controls, and model release dates. Our statistical analysis reveals that human-written texts tend to exhibit simpler syntactic structures and more diverse semantic content. Furthermore, we calculate the variability of our set of features across models and domains. Both human- and machine-generated texts show stylistic diversity across domains, with human-written texts displaying greater variation in our features. Finally, we apply style embeddings to further test variability among human-written and machine-generated texts. Notably, newer models output text that is similarly variable, pointing to a homogenization of machine-generated texts.
2022
TUG-CIC at SemEval-2021 Task 6: Two-stage Fine-tuning for Intended Sarcasm Detection
Jason Angel
|
Segun Aroyehun
|
Alexander Gelbukh
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
We present our systems and findings for the iSarcasmEval: Intended Sarcasm Detection In English and Arabic at SEMEVAL 2022. Specifically we take part in Subtask A for the English language. The task aims to determine whether a text from social media (a tweet) is sarcastic or not. We model the problem using knowledge sources, a pre-trained language model on sentiment/emotion data and a dataset focused on intended sarcasm. Our submission ranked third place among 43 teams. In addition, we show a brief error analysis of our best model to investigate challenging examples for detecting sarcasm.