Sayani Basak


2025

pdf bib
BullyBench: Youth & Experts-in-the-loop Framework for Intrinsic and Extrinsic Cyberbullying NLP Benchmarking
Kanishk Verma | Sri Balaaji | Joachim Wagner | Arefeh Kazemi | Darragh Mccashin | Isobel Walsh@dcu | Sayani Basak | Sinan Asci | Yelena Cherkasova | Alexandros Poulis | James Ohiggins Norman | Rebecca Umbach Umbach | Tijana Milosevic | Brian Davis
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Cyberbullying (CB) involves complex relational dynamics that are often oversimplified as a binary classification task. Existing youth-focused CB datasets rely on scripted role-play, lacking conversational realism and ethical youth involvement, with little or no evaluation of their social plausibility. To address this, we introduce a youth-in-the-loop dataset “BullyBench” developed by adolescents (ages 15–16) through an ethical co-research framework. We introduce a structured intrinsic quality evaluation with experts-in-the-loop (social scientists, psychologists, and content moderators) for assessing realism, relevance, and coherence in youth CB data. Additionally, we perform extrinsic baseline evaluation of this dataset by benchmarking encoder- and decoder-only language models for multi-class CB role classification for future research. A three-stage annotation process by young adults refines the dataset into a gold-standard test benchmark, a high-quality resource grounded in minors’ lived experiences of CB detection. Code and data are available for review