Since the advent of large language models (LLMs), prompt engineering has been a crucial step for eliciting desired responses for various Natural Language Processing (NLP) tasks. However, prompt engineering remains an impediment for end users due to rapid advances in models, tasks, and associated best practices. To mitigate this, Automatic Prompt Optimization (APO) techniques have recently emerged that use various automated techniques to help improve the performance of LLMs on various tasks. In this paper, we present a comprehensive survey summarizing the current progress and remaining challenges in this field. We provide a formal definition of APO, a 5-part unifying framework, and then proceed to rigorously categorize all relevant works based on their salient features therein. We hope to spur further research guided by our framework.
Large Vision Language Models (LVLMs) demonstrate strong capabilities in visual understanding and description, yet often suffer from hallucinations, attributing incorrect or misleading features to images. We observe that LVLMs disproportionately focus on a small subset of image tokens—termed blind tokens—which are typically irrelevant to the query (e.g., background or non-object regions). We hypothesize that such attention misalignment plays a key role in generating hallucinated responses. To mitigate this issue, we propose Attentional Vision Calibration (AvisC), a test-time approach that dynamically recalibrates the influence of blind tokens without modifying the underlying attention mechanism. AvisC first identifies blind tokens by analyzing layer-wise attention distributions over image tokens, then employs a contrastive decoding strategy to balance the influence of original and blind-token-biased logits. Experiments on standard benchmarks, including POPE, MME, and AMBER, demonstrate that AvisC effectively reduces hallucinations in LVLMs.
Large Vision Language Models (LVLMs) often suffer from object hallucination, which undermines their reliability. Surprisingly, we find that simple object-based visual prompting—overlaying visual cues (e.g., bounding box, circle) on images—can significantly mitigate such hallucination; however, different visual prompts (VPs) vary in effectiveness. To address this, we propose Black-Box Visual Prompt Engineering (BBVPE), a framework to identify optimal VPs that enhance LVLM responses without needing access to model internals. Our approach employs a pool of candidate VPs and trains a router model to dynamically select the most effective VP for a given input image. This black-box approach is model-agnostic, making it applicable to both open-source and proprietary LVLMs. Evaluations on benchmarks such as POPE and CHAIR demonstrate that BBVPE effectively reduces object hallucination.