Sanchit Sinha


2025

pdf bib
COCO-Tree: Compositional Hierarchical Concept Trees for Enhanced Reasoning in Vision-Language Models
Sanchit Sinha | Guangzhi Xiong | Aidong Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Compositional reasoning remains a persistent weakness of modern vision language models (VLMs): they often falter when a task hinges on understanding how multiple objects, attributes, and relations interact within an image. Multiple research works have attempted to improve compositionality performance by creative tricks such as improving prompt structure, chain of thought reasoning, etc. A more recent line of work attempts to impart additional reasoning in VLMs using well-trained Large Language Models (LLMs), which are far superior in linguistic understanding than VLMs to compensate for the limited linguistic prowess of VLMs. However, these approaches are either resource-intensive or do not provide an interpretable reasoning process. In this paper, we present “COCO-Tree” - a novel approach that augments VLM outputs with carefully designed neurosymbolic concept trees learned from LLMs to improve VLM’s linguistic reasoning. COCO-Tree’s beam search-inspired reasoning process boosts compositionality performance and provides a rationale behind VLM predictions. Empirical results on four compositionality benchmarks, Winoground, EqBench, ColorSwap, and SugarCrepe, in seven different open-source VLMs with varying sizes, demonstrate that COCO-Tree significantly improves compositional generalization by 5-10% over baselines.

2021

pdf bib
Perturbing Inputs for Fragile Interpretations in Deep Natural Language Processing
Sanchit Sinha | Hanjie Chen | Arshdeep Sekhon | Yangfeng Ji | Yanjun Qi
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-stake areas like medicine or finance. Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text. Via a small portion of word-level swaps, these adversarial perturbations aim to make the resulting text semantically and spatially similar to its seed input (therefore sharing similar interpretations). Simultaneously, the generated examples achieve the same prediction label as the seed yet are given a substantially different explanation by the interpretation methods. Our experiments generate fragile interpretations to attack two SOTA interpretation methods, across three popular Transformer models and on three different NLP datasets. We observe that the rank order correlation and top-K intersection score drops by over 20% when less than 10% of words are perturbed on average. Further, rank-order correlation keeps decreasing as more words get perturbed. Furthermore, we demonstrate that candidates generated from our method have good quality metrics.