Runze Wu


2025

pdf bib
Prompt Candidates, then Distill: A Teacher-Student Framework for LLM-driven Data Annotation
Mingxuan Xia | Haobo Wang | Yixuan Li | Zewei Yu | Jindong Wang | Junbo Zhao | Runze Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, Large Language Models (LLMs) have demonstrated significant potential for data annotation, markedly reducing the labor costs associated with downstream applications. However, existing methods mostly adopt an aggressive strategy by prompting LLM to determine a single gold label for each unlabeled sample. Due to the inherent uncertainty within LLMs, they often produce incorrect labels for difficult samples, severely compromising the data quality for downstream applications. Motivated by ambiguity aversion in human behaviors, we propose a novel candidate annotation paradigm wherein large language models are encouraged to output all possible labels when incurring uncertainty. To ensure unique labels are provided for downstream tasks, we develop a teacher-student framework CanDist that distills candidate annotations with a Small Language Model (SLM). We further provide a rigorous justification demonstrating that distilling candidate annotations from the teacher LLM offers superior theoretical guarantees compared to directly using single annotations. Extensive experiments across six text classification tasks validate the effectiveness of our proposed method. The source code is available at https://github.com/MingxuanXia/CanDist.

pdf bib
IRT-Router: Effective and Interpretable Multi-LLM Routing via Item Response Theory
Wei Song | Zhenya Huang | Cheng Cheng | Weibo Gao | Bihan Xu | GuanHao Zhao | Fei Wang | Runze Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks. However, selecting the optimal LLM to respond to a user query often necessitates a delicate balance between performance and cost. While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable. To address this trade-off, we propose IRT-Router, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM. Inspired by Item Response Theory (IRT), a psychological measurement methodology, IRT-Router explicitly models the relationship between LLM capabilities and user query attributes. This not only enables accurate prediction of response performance but also provides interpretable insights, such as LLM abilities and query difficulty. Additionally, we design an online query warm-up technique based on semantic similarity, further enhancing the online generalization capability of IRT-Router. Extensive experiments on 20 LLMs and 12 datasets demonstrate that IRT-Router outperforms most baseline methods in terms of effectiveness and interpretability. Its superior performance in cold-start scenarios further confirms the reliability and practicality of IRT-Router in real-world applications. Code is available at https://github.com/Mercidaiha/IRT-Router.

pdf bib
Towards Transferable Personality Representation Learning based on Triplet Comparisons and Its Applications
Kai Tang | Rui Wang | Renyu Zhu | Minmin Lin | Xiao Ding | Tangjie Lv | Changjie Fan | Runze Wu | Haobo Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Personality is an important concept in psychology that reflects individual differences in thinking and behavior, and has significant applications across various fields. Most existing personality analysis methods address this issue at the bag level, treating the entire corpus gathered from one individual as a single unit for classification. However, this paradigm presents several challenges. From the data perspective, collecting a large corpus for each individual and performing comprehensive annotations pose significant difficulties in both data collection and labeling. On the application side, concentrating on classifying the entire corpus limits its applicability in more common single-instance scenarios. To address these issues, we propose a new task paradigm in text-based personality representation learning. Specifically, we construct a triplet personality trend comparison dataset to learn single-sentence personality embeddings with desirable metric properties. This approach removes the traditional constraints on data sources, facilitating dataset expansion, and can leverage the transfer capabilities of embeddings to easily adapt to various downstream tasks. Our experiments show that the learned embeddings significantly boost performance by a relative 10% across various applications, including personality detection, personality retrieval, and emotion translation prediction. The code and dataset are available at https://github.com/zjutangk/PTCD.

pdf bib
CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
Maosheng Qin | Renyu Zhu | Mingxuan Xia | Chenchenkai | Zhen Zhu | Minmin Lin | Junbo Zhao | Lu Xu | Changjie Fan | Runze Wu | Haobo Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources—including Large Language Models (LLMs), Small Language Models (SLMs), and human experts—they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.

2024

pdf bib
Learning Geometry-Aware Representations for New Intent Discovery
Kai Tang | Junbo Zhao | Xiao Ding | Runze Wu | Lei Feng | Gang Chen | Haobo Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

New intent discovery (NID) is an important problem for deploying practical dialogue systems, which trains intent classifiers on a semi-supervised corpus where unlabeled user utterances contain both known and novel intents. Most existing NID algorithms place hope on the sample similarity to cluster unlabeled corpus to known or new samples. Lacking supervision on new intents, we experimentally find the intent classifier fails to fully distinguish new intents since they tend to assemble into intertwined centers.To address this problem, we propose a novel GeoID framework that learns geometry-aware representations to maximally separate all intents. Specifically, we are motivated by the recent findings on Neural Collapse (NC) in classification tasks to derive optimal intent center structure. Meanwhile, we devise a dual pseudo-labeling strategy based on optimal transport assignments and semi-supervised clustering, ensuring proper utterances-to-center arrangement.Extensive results show that our GeoID method establishes a new state-of-the-art performance, achieving a +3.49% average accuracy improvement on three standardized benchmarking datasets. We also verify its usefulness in assisting large language models for improved in-context performance.

2023

pdf bib
FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
Ruixuan Xiao | Yiwen Dong | Junbo Zhao | Runze Wu | Minmin Lin | Gang Chen | Haobo Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Collecting high-quality labeled data for model training is notoriously time-consuming and labor-intensive for various NLP tasks. While copious solutions, such as active learning for small language models (SLMs) and prevalent in-context learning in the era of large language models (LLMs), have been proposed and alleviate the labeling burden to some extent, their performances are still subject to human intervention. It is still underexplored how to reduce the annotation cost in the LLMs era. To bridge this, we revolutionize traditional active learning and propose an innovative collaborative learning framework FreeAL to interactively distill and filter the task-specific knowledge from LLMs. During collaborative training, an LLM serves as an active annotator inculcating its coarse-grained knowledge, while a downstream SLM is incurred as a student to filter out high-quality in-context samples to feedback LLM for the subsequent label refinery. Extensive experiments on eight benchmark datasets demonstrate that FreeAL largely enhances the zero-shot performances for both SLM and LLM without any human supervision.