Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method. Our code is available at https://github.com/Nostradamus4869/Parenting.
Large Language Models (LLMs) excel in general language tasks, motivating their adaptation to specialized domains such as healthcare. Effective domain adaptation typically involves supervised fine-tuning (SFT) on carefully selected instruction-tuning data. Current data selection methods adopt a data-centric approach, relying on external annotations and heuristics to identify externally defined high-quality or challenging data. Our exploratory experiments highlight this approach fails to improve the model’s domain performance, due to misalignment between selected data and the model’s knowledge distribution. To tackle this, we propose Decomposed Difficulty-based Data Selection (3DS), a two-stage model-centric data selection framework that aligns data selection with the model’s distribution. 3DS employs Prompt-Driven Data Selection to filter out noise based on the model’s knowledge via explicit alignment in Stage#1, then adopts Decomposed Difficulty-based Data Selection to guide selection via three novel data difficulty metrics, including Instruction Understanding, Response Confidence, and Response Correctness in Stage#2, enhanced by an attention-based importance weighting mechanism for accurate calibration.Extensive experiments in the healthcare domain show 3DS outperforms existing methods by up to 2.97% accuracy, with additional validation in law and general domains, confirming its generalization ability. Our dataset and code are open-sourced at https://github.com/PuppyKnightUniversity/3DS.
Refusal-Aware Instruction Tuning (RAIT) aims to enhance Large Language Models (LLMs) by improving their ability to refuse responses to questions beyond their knowledge, thereby reducing hallucinations and improving reliability. Effective RAIT must address two key challenges: firstly, effectively reject unknown questions to minimize hallucinations; secondly, avoid over-refusal to ensure questions that can be correctly answered are not rejected, thereby maintain the helpfulness of LLM outputs. In this paper, we address the two challenges by deriving insightful observations from the gradient-based perspective, and proposing the Gradient-driven Refusal Aware Instruction Tuning Framework GRAIT: (1) employs gradient-driven sample selection to effectively minimize hallucinations and (2) introduces an adaptive weighting mechanism during fine-tuning to reduce the risk of over-refusal, achieving the balance between accurate refusals and maintaining useful responses. Experimental evaluations on open-ended and multiple-choice question answering tasks demonstrate that GRAIT significantly outperforms existing RAIT methods in the overall performance. The source code and data will be available at https://github.com/opendatalab/GRAIT .