2025
pdf
bib
abs
Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation
Shuo Tang
|
Xianghe Pang
|
Zexi Liu
|
Bohan Tang
|
Rui Ye
|
Tian Jin
|
Xiaowen Dong
|
Yanfeng Wang
|
Siheng Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Post-training is essential for enabling large language models (LLMs) to follow human instructions. However, its effectiveness depends on high-quality instruction data, which is challenging to obtain in the real world due to privacy concerns, data scarcity, and high annotation costs. To fill this gap, inspired by the recent success of using LLMs to simulate human society, we propose MATRIX, a multi-agent simulator that automatically generates diverse text-based scenarios, capturing a wide range of real-world human needs in a realistic and scalable manner. Leveraging these outputs, we introduce a novel scenario-driven instruction generator MATRIX-Gen for controllable and highly realistic data synthesis. Extensive experiments demonstrate that our framework effectively generates both general and domain-specific data. On AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta’s Llama-3-8B-Instruct model, which was trained on over 10M pairs.
pdf
bib
abs
FedMABench: Benchmarking Mobile GUI Agents on Decentralized Heterogeneous User Data
WenHao Wang
|
Zijie Yu
|
Rui Ye
|
Jianqing Zhang
|
Guangyi Liu
|
Liang Liu
|
Siheng Chen
|
Yanfeng Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Mobile GUI agents have attracted tremendous research participation recently. Traditional approaches to mobile agent training rely on centralized data collection, leading to high cost and limited scalability. Distributed training utilizing federated learning offers an alternative by harnessing real-world user data, providing scalability and reducing costs. However, pivotal challenges, including the absence of standardized benchmarks, hinder progress in this field. To tackle the challenges, we introduce FedMABench, the first benchmark for federated training and evaluation of mobile GUI agents, specifically designed for heterogeneous scenarios. FedMABench features 6 datasets with 30+ subsets, 8 federated algorithms, 10+ base models, and over 800 apps across 5 categories, providing a comprehensive framework for evaluating mobile agents across diverse environments. Through extensive experiments, we uncover several key insights: federated algorithms consistently outperform local training; the distribution of specific apps plays a crucial role in heterogeneity; and, even apps from distinct categories can exhibit correlations during training. FedMABench is publicly available at: https://github.com/wwh0411/FedMABench.
pdf
bib
abs
FedDQC: Data Quality Control in Federated Instruction-tuning of Large Language Models
Yaxin Du
|
Rui Ye
|
Fengting Yuchi
|
Wanru Zhao
|
Jingjing Qu
|
Yanfeng Wang
|
Siheng Chen
Findings of the Association for Computational Linguistics: ACL 2025
Federated Learning (FL) enables privacy-preserving collaborative instruction tuning of large language models (LLMs) by leveraging massively distributed data. However, the decentralized nature of FL exacerbates data quality challenges, as local clients lack global visibility to filter noisy or low-quality samples before training. To resolve this issue, we propose FedDQC, a novel federated instruction tuning framework with dynamic data quality control. Our approach introduces two key innovations. First, we propose instruction-response alignment (IRA)—an efficient client-side metric for quality evaluation requiring only low-cost inference. We validate that higher-IRA data corresponds to more relevant and easier-to-learn question-answer pairs. Second, mirroring the human easy-to-hard knowledge acquisition process, we design a quality-aware hierarchical FL training framework, where the LLM is progressively fine-tuned from high- to low-IRA data in a collaborative manner. The framework also supports adaptive data quality assessment at each hierarchy, enabling dynamic adjustments throughout the training process. Extensive experiments on synthetic and real-world datasets show that our method significantly improves LLM performance on mixed-quality data in FL.
pdf
bib
abs
MobileA3gent: Training Mobile GUI Agents Using Decentralized Self-Sourced Data from Diverse Users
WenHao Wang
|
Mengying Yuan
|
Zijie Yu
|
Guangyi Liu
|
Rui Ye
|
Tian Jin
|
Siheng Chen
|
Yanfeng Wang
Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP)
The advancement of mobile GUI agents has opened new opportunities for automating tasks on mobile devices. Training these agents requires large-scale high-quality data, which is prohibitively expensive when relying on human labor. Given the vast population of global mobile phone users, if automated data collection from them becomes feasible, the resulting data volume and the subsequently trained mobile agents could reach unprecedented levels. Nevertheless, two major challenges arise: (1) extracting user instructions without human intervention and (2) utilizing distributed user data while preserving privacy.To tackle these challenges, we propose MobileA3gent, a collaborative framework that trains mobile GUI Agents using decentralized self-sourced data from diverse users. The framework comprises two components, each targeting a specific challenge: (1) Auto-Annotation, which enables the automatic collection of high-quality datasets during users’ routine phone usage with minimal cost. (2) FedVLM-A, which enhances federated VLM training under non-IID distributions by incorporating adapted global aggregation based on both episode-level and step-level variability. Extensive experiments prove that MobileA3gent achieves superior performance over traditional approaches at only 1% of the cost, highlighting its potential for real-world applications. Our code is publicly available at: https://anonymous.4open.science/r/MobileA3gent-Anonymous.
2024
pdf
bib
abs
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server
WenHao Wang
|
Xiaoyu Liang
|
Rui Ye
|
Jingyi Chai
|
Siheng Chen
|
Yanfeng Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The success of large language models (LLMs) facilitate many parties to fine-tune LLMs on their own private data. However, this practice raises privacy concerns due to the memorization of LLMs. Existing solutions, such as utilizing synthetic data for substitution, struggle to simultaneously improve performance and preserve privacy.They either rely on a local model for generation, resulting in a performance decline, or take advantage of APIs, directly exposing the data to API servers. To address this issue, we propose KnowledgeSG, a novel client-server framework which enhances synthetic data quality and improves model performance while ensuring privacy. We achieve this by learning local knowledge from the private data with differential privacy (DP) and distilling professional knowledge from the server. Additionally, inspired by federated learning, we transmit models rather than data between the client and server to prevent privacy leakage.Extensive experiments in medical and financial domains demonstrate the effectiveness of *KnowledgeSG*. Our code is now publicly available at https://github.com/wwh0411/KnowledgeSG.
pdf
bib
abs
On the Vulnerability of Safety Alignment in Open-Access LLMs
Jingwei Yi
|
Rui Ye
|
Qisi Chen
|
Bin Zhu
|
Siheng Chen
|
Defu Lian
|
Guangzhong Sun
|
Xing Xie
|
Fangzhao Wu
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs) possess immense capabilities but are susceptible to malicious exploitation. To mitigate the risk, safety alignment is employed to align LLMs with ethical standards. However, safety-aligned LLMs may remain vulnerable to carefully crafted jailbreak attacks, but these attacks often face high rejection rates and limited harmfulness. In this paper, we expose the vulnerabilities of safety alignment in open-access LLMs, which can significantly enhance the success rate and harmfulness of jailbreak attacks. Through reverse alignment, achieved by accessing model parameters, we show the feasibility of efficiently fine-tuning LLMs to undermine their inherent safeguards. We investigate two types of reverse alignment techniques: reverse supervised fine-tuning (RSFT) and reverse preference optimization (RPO). RSFT operates by supervising the fine-tuning of LLMs to reverse their inherent values. We also explore how to prepare data needed for RSFT. RPO optimizes LLMs to enhance their preference for harmful content, reversing the models’ safety alignment. Our extensive experiments reveal that open-access high-performance LLMs can be adeptly reverse-aligned to output harmful content, even in the absence of manually curated malicious datasets. Our research acts as a whistleblower for the community, emphasizing the need to pay more attention to safety of open-accessing LLMs. It also underscores the limitations of current safety alignment approaches and calls for research on robust safety alignment methods to counteract malicious fine-tuning attacks.