Trustworthiness in healthcare question-answering (QA) systems is important for ensuring patient safety, clinical effectiveness, and user confidence. As large language models (LLMs) become increasingly integrated into medical settings, the reliability of their responses directly influences clinical decision-making and patient outcomes. However, achieving comprehensive trustworthiness in medical QA poses significant challenges due to the inherent complexity of healthcare data, the critical nature of clinical scenarios, and the multifaceted dimensions of trustworthy AI. In this survey, we systematically examine six key dimensions of trustworthiness in medical QA, i.e., Factuality, Robustness, Fairness, Safety, Explainability, and Calibration. We review how each dimension is evaluated in existing LLM-based medical QA systems. We compile and compare major benchmarks designed to assess these dimensions and analyze evaluation-guided techniques that drive model improvements, such as retrieval-augmented grounding, adversarial fine-tuning, and safety alignment. Finally, we identify open challenges—such as scalable expert evaluation, integrated multi-dimensional metrics, and real-world deployment studies—and propose future research directions to advance the safe, reliable, and transparent deployment of LLM-powered medical QA.
Long document classification presents challenges in capturing both local and global dependencies due to their extensive content and complex structure. Existing methods often struggle with token limits and fail to adequately model hierarchical relationships within documents. To address these constraints, we propose a novel model leveraging a graph-tree structure. Our approach integrates syntax trees for sentence encodings and document graphs for document encodings, which capture fine-grained syntactic relationships and broader document contexts, respectively. We use Tree Transformers to generate sentence encodings, while a graph attention network models inter- and intra-sentence dependencies. During training, we implement bidirectional information propagation from word-to-sentence-to-document and vice versa, which enriches the contextual representation. Our proposed method enables a comprehensive understanding of content at all hierarchical levels and effectively handles arbitrarily long contexts without token limit constraints. Experimental results demonstrate the effectiveness of our approach in all types of long document classification tasks.
The International Classification of Diseases (ICD) serves as a definitive medical classification system encompassing a wide range of diseases and conditions. The primary objective of ICD indexing is to allocate a subset of ICD codes to a medical record, which facilitates standardized documentation and management of various health conditions. Most existing approaches have suffered from selecting the proper label subsets from an extremely large ICD collection with a heavy long-tailed label distribution. In this paper, we leverage a multi-stage “retrieve and re-rank” framework as a novel solution to ICD indexing, via a hybrid discrete retrieval method, and re-rank retrieved candidates with contrastive learning that allows the model to make more accurate predictions from a simplified label space. The retrieval model is a hybrid of auxiliary knowledge of the electronic health records (EHR) and a discrete retrieval method (BM25), which efficiently collects high-quality candidates. In the last stage, we propose a label co-occurrence guided contrastive re-ranking model, which re-ranks the candidate labels by pulling together the clinical notes with positive ICD codes. Experimental results show the proposed method achieves state-of-the-art performance on a number of measures on the MIMIC-III benchmark.
Isotropy is the property that embeddings are uniformly distributed around the origin. Previous work has shown that Transformer embedding spaces are anisotropic, which is called the representation degradation problem. This degradation has been assumed to be inherent to the standard language modeling tasks and to apply to all Transformer models regardless of their architecture. In this work we identify a set of Transformer models with isotropic embedding spaces, the large Pythia models. We examine the isotropy of Pythia models and explore how isotropy and anisotropy develop as a model is trained. We find that anisotropic models do not develop as previously theorized, using our own analysis to show that the large Pythia models optimize their final Layer Norm for isotropy, and provide reasoning why previous theoretical justifications for anisotropy were insufficient. The identification of a set of isotropic Transformer models calls previous assumptions into question, provides a set of models to contrast existing analysis, and should lead to deeper insight into isotropy.