Rishika Bhagwatkar


2025

pdf bib
CAVE : Detecting and Explaining Commonsense Anomalies in Visual Environments
Rishika Bhagwatkar | Syrielle Montariol | Angelika Romanou | Beatriz Borges | Irina Rish | Antoine Bosselut
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Humans can naturally identify, reason about, and explain anomalies in their environment. In computer vision, this long-standing challenge remains limited to industrial defects or unrealistic, synthetically generated anomalies, failing to capture the richness and unpredictability of real-world anomalies. In this work, we introduce CAVE, the first benchmark of real-world visual anomalies. CAVE supports three open-ended tasks: anomaly description, explanation, and justification; with fine-grained annotations for visual grounding and categorizing anomalies based on their visual manifestations, their complexity, severity, and commonness. These annotations draw inspiration from cognitive science research on how humans identify and resolve anomalies, providing a comprehensive framework for evaluating Vision-Language Models (VLMs) in detecting and understanding anomalies. We show that state-of-the-art VLMs struggle with visual anomaly perception and commonsense reasoning, even with advanced prompting strategies. By offering a realistic and cognitively grounded benchmark, CAVE serves as a valuable resource for advancing research in anomaly detection and commonsense reasoning in VLMs.

2024

pdf bib
Improving Adversarial Robustness in Vision-Language Models with Architecture and Prompt Design
Rishika Bhagwatkar | Shravan Nayak | Pouya Bashivan | Irina Rish
Findings of the Association for Computational Linguistics: EMNLP 2024

Vision-Language Models (VLMs) have seen a significant increase in both research interest and real-world applications across various domains, including healthcare, autonomous systems, and security. However, their growing prevalence demands higher reliability and safety including robustness to adversarial attacks. We systematically examine the possibility of incorporating adversarial robustness through various model design choices. We explore the effects of different vision encoders, the resolutions of vision encoders, and the size and type of language models. Additionally, we introduce novel, cost-effective approaches to enhance robustness through prompt engineering. By simply suggesting the possibility of adversarial perturbations or rephrasing questions, we demonstrate substantial improvements in model robustness against strong image-based attacks such as Auto-PGD. Our findings provide important guidelines for developing more robust VLMs, particularly for deployment in safety-critical environments where reliability and security are paramount. These insights are crucial for advancing the field of VLMs, ensuring they can be safely and effectively utilized in a wide range of applications.