Renyu Zhu


2025

pdf bib
Towards Transferable Personality Representation Learning based on Triplet Comparisons and Its Applications
Kai Tang | Rui Wang | Renyu Zhu | Minmin Lin | Xiao Ding | Tangjie Lv | Changjie Fan | Runze Wu | Haobo Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Personality is an important concept in psychology that reflects individual differences in thinking and behavior, and has significant applications across various fields. Most existing personality analysis methods address this issue at the bag level, treating the entire corpus gathered from one individual as a single unit for classification. However, this paradigm presents several challenges. From the data perspective, collecting a large corpus for each individual and performing comprehensive annotations pose significant difficulties in both data collection and labeling. On the application side, concentrating on classifying the entire corpus limits its applicability in more common single-instance scenarios. To address these issues, we propose a new task paradigm in text-based personality representation learning. Specifically, we construct a triplet personality trend comparison dataset to learn single-sentence personality embeddings with desirable metric properties. This approach removes the traditional constraints on data sources, facilitating dataset expansion, and can leverage the transfer capabilities of embeddings to easily adapt to various downstream tasks. Our experiments show that the learned embeddings significantly boost performance by a relative 10% across various applications, including personality detection, personality retrieval, and emotion translation prediction. The code and dataset are available at https://github.com/zjutangk/PTCD.

pdf bib
CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
Maosheng Qin | Renyu Zhu | Mingxuan Xia | Chenchenkai | Zhen Zhu | Minmin Lin | Junbo Zhao | Lu Xu | Changjie Fan | Runze Wu | Haobo Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources—including Large Language Models (LLMs), Small Language Models (SLMs), and human experts—they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.

2024

pdf bib
Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition
Chengcheng Han | Renyu Zhu | Jun Kuang | Fengjiao Chen | Xiang Li | Ming Gao | Xuezhi Cao | Yunsen Xian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.

pdf bib
Make Prompt-based Black-Box Tuning Colorful: Boosting Model Generalization from Three Orthogonal Perspectives
Qiushi Sun | Chengcheng Han | Nuo Chen | Renyu Zhu | Jingyang Gong | Xiang Li | Ming Gao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have shown increasing power on various natural language processing (NLP) tasks. However, tuning these models for downstream tasks usually needs exorbitant costs or is unavailable due to commercial considerations. Recently, black-box tuning has been proposed to address this problem by optimizing task-specific prompts without accessing the gradients and hidden representations. However, most existing works have yet fully exploited the potential of gradient-free optimization under the scenario of few-shot learning. In this paper, we describe BBT-RGB, a suite of straightforward and complementary techniques for enhancing the efficiency and performance of black-box optimization. Specifically, our method includes three plug-and-play components: (1) Two-stage derivative-free optimization strategy that facilitates fast convergence and mitigates overfitting; (2) Automatic verbalizer construction with its novel usage under few-shot settings; (3) Better prompt initialization policy based on instruction search and auto-selected demonstration. Extensive experiments across various tasks on natural language understanding and inference demonstrate the effectiveness of our method. Our codes are available at https://github.com/QiushiSun/BBT-RGB.

pdf bib
Structure-aware Fine-tuning for Code Pre-trained Models
Jiayi Wu | Renyu Zhu | Nuo Chen | Qiushi Sun | Xiang Li | Ming Gao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Over the past few years, we have witnessed remarkable advancements in Code Pre-trained Models (CodePTMs). These models achieved excellent representation capabilities by designing structure-based pre-training tasks for code. However, how to enhance the absorption of structural knowledge when fine-tuning CodePTMs still remains a significant challenge. To fill this gap, in this paper, we present SAT, a novel structure-enhanced and plug-and-play fine-tuning method for CodePTMs. We first propose a structure loss to quantify the difference between the information learned by CodePTMs and the knowledge extracted from code structure. Specifically, we use the attention scores from Transformer layer as the learned information, and the shortest path length between leaves in abstract syntax trees as the structural knowledge. Subsequently, multi-task learning is introduced to improve the performance of fine-tuning. Experiments conducted on four pre-trained models and two generation tasks demonstrate the effectiveness of our proposed method as a plug-and-play solution. Furthermore, we observed that SAT can benefit CodePTMs more with limited training data.

2023

pdf bib
When Gradient Descent Meets Derivative-Free Optimization: A Match Made in Black-Box Scenario
Chengcheng Han | Liqing Cui | Renyu Zhu | Jianing Wang | Nuo Chen | Qiushi Sun | Xiang Li | Ming Gao
Findings of the Association for Computational Linguistics: ACL 2023

Large pre-trained language models (PLMs) have garnered significant attention for their versatility and potential for solving a wide spectrum of natural language processing (NLP) tasks. However, the cost of running these PLMs may be prohibitive. Furthermore, PLMs may not be open-sourced due to commercial considerations and potential risks of misuse, such as GPT-3. The parameters and gradients of PLMs are unavailable in this scenario. To solve the issue, black-box tuning has been proposed, which utilizes derivative-free optimization (DFO), instead of gradient descent, for training task-specific continuous prompts. However, these gradient-free methods still exhibit a significant gap compared to gradient-based methods. In this paper, we introduce gradient descent into black-box tuning scenario through knowledge distillation. Furthermore, we propose a novel method GDFO, which integrates gradient descent and derivative-free optimization to optimize task-specific continuous prompts in a harmonized manner. Experimental results show that GDFO can achieve significant performance gains over previous state-of-the-art methods.

2022

pdf bib
A Neural Network Architecture for Program Understanding Inspired by Human Behaviors
Renyu Zhu | Lei Yuan | Xiang Li | Ming Gao | Wenyuan Cai
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Program understanding is a fundamental task in program language processing. Despite the success, existing works fail to take human behaviors as reference in understanding programs. In this paper, we consider human behaviors and propose the PGNN-EK model that consists of two main components. On the one hand, inspired by the “divide-and-conquer” reading behaviors of humans, we present a partitioning-based graph neural network model PGNN on the upgraded AST of codes. On the other hand, to characterize human behaviors of resorting to other resources to help code comprehension, we transform raw codes with external knowledge and apply pre-training techniques for information extraction. Finally, we combine the two embeddings generated from the two components to output code embeddings. We conduct extensive experiments to show the superior performance of PGNN-EK on the code summarization and code clone detection tasks. In particular, to show the generalization ability of our model, we release a new dataset that is more challenging for code clone detection and could advance the development of the community. Our codes and data are publicly available at https://github.com/RecklessRonan/PGNN-EK.

pdf bib
CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure
Nuo Chen | Qiushi Sun | Renyu Zhu | Xiang Li | Xuesong Lu | Ming Gao
Findings of the Association for Computational Linguistics: EMNLP 2022

Code pre-trained models (CodePTMs) have recently demonstrated significant success in code intelligence. To interpret these models, some probing methods have been applied. However, these methods fail to consider the inherent characteristics of codes. In this paper, to address the problem, we propose a novel probing method CAT-probing to quantitatively interpret how CodePTMs attend code structure. We first denoise the input code sequences based on the token types pre-defined by the compilers to filter those tokens whose attention scores are too small. After that, we define a new metric CAT-score to measure the commonality between the token-level attention scores generated in CodePTMs and the pair-wise distances between corresponding AST nodes. The higher the CAT-score, the stronger the ability of CodePTMs to capture code structure. We conduct extensive experiments to integrate CAT-probing with representative CodePTMs for different programming languages. Experimental results show the effectiveness of CAT-probing in CodePTM interpretation. Our codes and data are publicly available at https://github.com/nchen909/CodeAttention.