Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in complex multimodal tasks. While MLLMs excel at visual perception and reasoning in third-person and egocentric videos, they are prone to hallucinations, generating coherent yet inaccurate responses. We present EGOILLUSION, a first benchmark to evaluate MLLM hallucinations in egocentric videos. EGOILLUSION comprises 1,400 videos paired with 8,000 human-annotated open and closed-ended questions designed to trigger hallucinations in both visual and auditory cues in egocentric videos. Evaluations across ten MLLMs reveal significant challenges, including powerful models like GPT-4o and Gemini, achieving only 59% accuracy. EGOILLUSION lays the foundation in developing robust benchmarks to evaluate the effectiveness of MLLMs and spurs the development of better egocentric MLLMs with reduced hallucination rates. Our benchmark will be open-sourced for reproducibility
Speech enhancement (SE) is the fundamental task of enhancing the clarity and quality of speech in the presence of non-stationary additive noise. While deterministic deep learning models have been commonly employed for SE, recent research indicates that generative models, such as denoising diffusion probabilistic models (DDPMs), have shown promise. However, different from speech generation, SE has a strong constraint to generate results in accordance with the underlying ground-truth signal. Additionally, for a wide variety of applications, SE systems need to be employed in real-time, and traditional diffusion models (DMs) requiring many iterations of a large model during inference are inefficient. To address these issues, we propose ProSE (diffusion-based Priors for SE), a novel methodology based on an alternative framework for applying diffusion models to SE. Specifically, we first apply DDPMs to generate priors in a latent space due to their powerful distribution mapping capabilities. The priors are then integrated into a transformer-based regression model for SE. The priors guide the regression model in the enhancement process. Since the diffusion process is applied to a compact latent space, the diffusion model takes fewer iterations than the traditional DM to obtain accurate estimations. Additionally, using a regression model for SE avoids the distortion issue caused by misaligned details generated by DMs. Comprehensive experiments show that ProSE achieves state-of-the-art performance on synthetic and real-world datasets using various metrics while consuming less computational costs.
Perceiving and understanding non-speech sounds and non-verbal speech is essential to making decisions that help us interact with our surroundings. In this paper, we propose GAMA, a novel General-purpose Large Audio-Language Model (LALM) with Advanced Audio Understanding and Complex Reasoning Abilities. We build GAMA by integrating an LLM with multiple types of audio representations, including features from a custom Audio Q-Former, a multi-layer aggregator that aggregates features from multiple layers of an audio encoder. We fine-tune GAMA on a large-scale audio-language dataset, which augments it with audio understanding capabilities. Next, we propose CompA-R (Instruction-Tuning for Complex Audio Reasoning), a synthetically generated instruction-tuning (IT) dataset with instructions that require the model to perform complex reasoning on the input audio. We instruction-tune GAMA with CompA-R to endow it with complex reasoning abilities, where we further add a soft prompt as input with high-level semantic evidence by leveraging event tags of the input audio. Finally, we also propose CompA-R-test, a human-labeled evaluation dataset for evaluating the capabilities of LALMs on open-ended audio question-answering that requires complex reasoning. Through automated and expert human evaluations, we show that GAMA outperforms all other LALMs in literature on diverse audio understanding tasks by margins of 1%-84% and demonstrates state-of-the-art performance on deductive reasoning and hallucination evaluation benchmarks. Further, GAMA IT-ed on CompA-R proves to be superior in its complex reasoning capabilities.