Qiyuan Zhang


2025

pdf bib
Crowd Comparative Reasoning: Unlocking Comprehensive Evaluations for LLM-as-a-Judge
Qiyuan Zhang | Yufei Wang | Yuxin Jiang | Liangyou Li | Chuhan Wu | Yasheng Wang | Xin Jiang | Lifeng Shang | Ruiming Tang | Fuyuan Lyu | Chen Ma
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

LLM-as-a-Judge, which generates chain-of-thought (CoT) judgments, has become a widely adopted auto-evaluation method. However, its reliability is compromised by the CoT reasoning’s inability to capture comprehensive and deeper details, often leading to incomplete outcomes. Existing methods mainly rely on majority voting or criteria expansion, which is insufficient to address the limitation in CoT. We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses, thereby exposing deeper and more comprehensive details within the candidate responses. This process effectively guides LLM-as-a-Judge to provide a more detailed CoT judgment. Extensive experiments demonstrate that our approach enhances evaluation reliability, achieving an average accuracy gain of 6.7% across five benchmarks. Moreover, our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling for supervised fine-tuning (SFT), referred to as crowd rejection sampling, thereby enabling more efficient SFT. Our analysis confirms that CoTs generated by ours are more comprehensive and of higher quality, and evaluation accuracy improves as inference scales.

pdf bib
NILE: Internal Consistency Alignment in Large Language Models
Minda Hu | Qiyuan Zhang | Yufei Wang | Bowei He | Hongru Wang | Jingyan Zhou | Liangyou Li | Yasheng Wang | Chen Ma | Irwin King
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advances show that the world knowledge in the Instruction Fine-Tuning (IFT) dataset, which is incompatible with LLMs’ internal knowledge, can greatly hurt the IFT performance. However, the effective integration and balancing of the internal knowledge of LLMs, acquired during pre-training, with existing IFT datasets remains a largely underexplored area of research. To address this gap, this work introduces NILE, a novel framework to optimize the effectiveness of IFT by adjusting IFT datasets through carefully aligning the world and internal knowledge. NILE employs a three-stage pipeline to effectively quantify and adjust consistency with the internal knowledge of target LLMs. Our analysis provides compelling evidence that balancing such consistency with pre-trained internal knowledge is pivotal for unleashing LLM potential, and confirms that NILE can systematically contribute to these substantial performance improvements. Experimental results demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple LLM ability evaluation datasets, achieving up to 66.6% gain on Arena-Hard and 68.5% on Alpaca-Eval V2.

2024

pdf bib
Collaborative Performance Prediction for Large Language Models
Qiyuan Zhang | Fuyuan Lyu | Xue Liu | Chen Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Comprehensively understanding and accurately predicting the performance of large language models across diverse downstream tasks has emerged as a pivotal challenge in NLP research. The pioneering scaling law on downstream works demonstrated intrinsic similarities within model families and utilized such similarities for performance prediction. However, they tend to overlook the similarities between model families and only consider design factors listed in the original scaling law. To overcome these limitations, we introduce a novel framework, Collaborative Performance Prediction (CPP), which significantly enhances prediction accuracy by leveraging the historical performance of various models on downstream tasks and other design factors for both model and task. We also collect a collaborative data sourced from online platforms containing both historical performance and additional design factors. With the support of the collaborative data, CPP not only surpasses traditional scaling laws in predicting the performance of scaled LLMs but also facilitates a detailed analysis of factor importance, an area previously overlooked.

2021

pdf bib
NOAHQA: Numerical Reasoning with Interpretable Graph Question Answering Dataset
Qiyuan Zhang | Lei Wang | Sicheng Yu | Shuohang Wang | Yang Wang | Jing Jiang | Ee-Peng Lim
Findings of the Association for Computational Linguistics: EMNLP 2021

While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex questions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.