Qiunan Du


2025

pdf bib
Correlation-Aware Example Selection for In-Context Learning with Nonsymmetric Determinantal Point Processes
Qiunan Du | Zhiliang Tian | Zhen Huang | Kailun Bian | Tianlun Liu | Zhaoning Zhang | Xinwang Liu | Feng Liu | Dongsheng Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

LLMs with in-context learning (ICL) obtain remarkable performance but are sensitive to the quality of ICL examples. Prior works on ICL example selection explored unsupervised heuristic methods and supervised LLM-based methods, but they typically focus on the selection of individual examples and ignore correlations among examples. Researchers use the determinantal point process (DPP) to model negative correlations among examples to select diverse examples. However, the DPP fails to model positive correlations among examples, while ICL still requires the positive correlations of examples to ensure the consistency of examples, which provides a clear instruction for LLMs. In this paper, we propose an ICL example selection method based on the nonsymmetric determinantal point process (NDPP) to capture positive and negative correlations, considering both the diversity and the relevance among ICL examples. Specifically, we optimize NDPP via kernel decomposition-based MLE to fit a constructed pseudo-labeled dataset, where we also propose a low-rank decomposition to reduce the computational cost. Further, we perform query-aware kernel adaptation on our NDPP to customize the input query, and we select examples via a MAP inference based on the adapted NDPP. Experimental results show our model outperforms strong baselines in ICL example selection.

pdf bib
DYNTEXT: Semantic-Aware Dynamic Text Sanitization for Privacy-Preserving LLM Inference
Juhua Zhang | Zhiliang Tian | Minghang Zhu | Yiping Song | Taishu Sheng | Siyi Yang | Qiunan Du | Xinwang Liu | Minlie Huang | Dongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025

LLMs face privacy risks when handling sensitive data. To ensure privacy, researchers use differential privacy (DP) to provide protection by adding noise during LLM training. However, users may be hesitant to share complete data with LLMs. Researchers follow local DP to sanitize the text on the user side and feed non-sensitive text to LLMs. The sanitization usually uses a fixed non-sensitive token list or a fixed noise distribution, which induces the risk of being attacked or semantic distortion. We argue that the token’s protection level should be adaptively adjusted according to its semantic-based information to balance the privacy-utility trade-off. In this paper, we propose DYNTEXT, an LDP-based Dynamic Text sanitization for privacy-preserving LLM inference, which dynamically constructs semantic-aware adjacency lists of sensitive tokens to sample non-sensitive tokens for perturbation. Specifically, DYNTEXT first develops a semantic-based density modeling under DP to extract each token’s density information. We propose token-level smoothing sensitivity by combining the idea of global sensitivity (GS) and local sensitivity (LS), which dynamically adjusts the noise scale to avoid excessive noise in GS and privacy leakage in LS. Then, we dynamically construct an adjacency list for each sensitive token based on its semantic density information. Finally, we apply the replacement mechanism to sample non-sensitive, semantically similar tokens from the adjacency list to replace sensitive tokens. Experiments show that DYNTEXT excels strong baselines on three datasets.