Qiongxiu Li
2025
Shared Path: Unraveling Memorization in Multilingual LLMs through Language Similarities
Xiaoyu Luo
|
Yiyi Chen
|
Johannes Bjerva
|
Qiongxiu Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
We present the first comprehensive study of Memorization in Multilingual Large Language Models (MLLMs), analyzing 95 languages using models across diverse model scales, architectures, and memorization definitions. As MLLMs are increasingly deployed, understanding their memorization behavior has become critical. Yet prior work has focused primarily on monolingual models, leaving multilingual memorization underexplored, despite the inherently long-tailed nature of training corpora. We find that the prevailing assumption, that memorization is highly correlated with training data availability, fails to fully explain memorization patterns in MLLMs. We hypothesize that treating languages in isolation — ignoring their similarities — obscures the true patterns of memorization. To address this, we propose a novel graph-based correlation metric that incorporates language similarity to analyze cross-lingual memorization. Our analysis reveals that among similar languages, those with fewer training tokens tend to exhibit higher memorization, a trend that only emerges when cross-lingual relationships are explicitly modeled. These findings underscore the importance of a language-aware perspective in evaluating and mitigating memorization vulnerabilities in MLLMs. This also constitutes empirical evidence that language similarity both explains Memorization in MLLMs and underpins Cross-lingual Transferability, with broad implications for multilingual NLP.
Large Language Models are Easily Confused: A Quantitative Metric, Security Implications and Typological Analysis
Yiyi Chen
|
Qiongxiu Li
|
Russa Biswas
|
Johannes Bjerva
Findings of the Association for Computational Linguistics: NAACL 2025
Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language. This phenomenon presents a critical challenge in text generation by LLMs, often appearing as erratic and unpredictable behavior. We hypothesize that there are linguistic regularities to this inherent vulnerability in LLMs and shed light on patterns of language confusion across LLMs. We introduce a novel metric, Language Confusion Entropy, designed to directly measure and quantify this confusion, based on language distributions informed by linguistic typology and lexical variation. Comprehensive comparisons with the Language Confusion Benchmark (Marchisio et al., 2024) confirm the effectiveness of our metric, revealing patterns of language confusion across LLMs. We further link language confusion to LLM security, and find patterns in the case of multilingual embedding inversion attacks. Our analysis demonstrates that linguistic typology offers theoretically grounded interpretation, and valuable insights into leveraging language similarities as a prior for LLM alignment and security.