Qiji Zhou


2025

pdf bib
ALLabel: Three-stage Active Learning for LLM-based Entity Recognition using Demonstration Retrieval
Zihan Chen | Lei Shi | Weize Wu | Qiji Zhou | Yue Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Many contemporary data-driven research efforts in the natural sciences, such as chemistry and materials science, require large-scale, high-performance entity recognition from scientific datasets. Large language models (LLMs) have increasingly been adopted to solve the entity recognition task, with the same trend being observed on all-spectrum NLP tasks. The prevailing entity recognition LLMs rely on fine-tuned technology, yet the fine-tuning process often incurs significant cost. To achieve a best performance-cost trade-off, we propose ALLabel, a three-stage framework designed to select the most informative and representative samples in preparing the demonstrations for LLM modeling. The annotated examples are used to construct a ground-truth retrieval corpus for LLM in-context learning. By sequentially employing three distinct active learning strategies, ALLabel consistently outperforms all baselines under the same annotation budget across three specialized domain datasets. Experimental results also demonstrate that selectively annotating only 5%-10% of the dataset with ALLabel can achieve performance comparable to the method annotating the entire dataset. Further analyses and ablation studies verify the effectiveness and generalizability of our proposal.

pdf bib
Reasoning is All You Need for Video Generalization: A Counterfactual Benchmark with Sub-question Evaluation
Qiji Zhou | YiFan Gong | Guangsheng Bao | Hongjie Qiu | Jinqiang Li | Xiangrong Zhu | Huajian Zhang | Yue Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Counterfactual reasoning is crucial for robust video understanding but remains underexplored in existing multimodal benchmarks. In this paper, we introduce **COVER** (**CO**unterfactual **V**id**E**o **R**easoning), a multidimensional multimodal benchmark that systematically evaluates MLLMs across the abstract-concrete and perception-cognition dimensions. Beyond prior multimodal benchmarks, COVER decomposes complex queries into structured sub-questions, enabling fine-grained reasoning analysis. Experiments on commercial and open-source models reveal a strong correlation between sub-question accuracy and counterfactual reasoning performance, highlighting the role of structured inference in video understanding. Furthermore, our results suggest a key insight: enhancing the reasoning capability of models is essential for improving the robustness of video understanding. COVER establishes a new standard for assessing MLLMs’ logical reasoning abilities in dynamic environments. Our work is available at https://github.com/gongyifan-hash/COVER-Benchmark.

2023

pdf bib
LogiCoT: Logical Chain-of-Thought Instruction Tuning
Hanmeng Liu | Zhiyang Teng | Leyang Cui | Chaoli Zhang | Qiji Zhou | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Generative Pre-trained Transformer 4 (GPT-4) demonstrates impressive chain-of-thought reasoning ability. Recent work on self-instruction tuning, such as Alpaca, has focused on enhancing the general proficiency of models. These instructions enable the model to achieve performance comparable to GPT-3.5 on general tasks like open-domain text generation and paraphrasing. However, they fall short of helping the model handle complex reasoning tasks. To bridge the gap, this paper presents LogiCoT, a new instruction-tuning dataset for Logical Chain-of-Thought reasoning with GPT-4. We elaborate on the process of harvesting instructions for prompting GPT-4 to generate chain-of-thought rationales. LogiCoT serves as an instruction set for teaching models of logical reasoning and elicits general reasoning skills.

2020

pdf bib
AMR Parsing with Latent Structural Information
Qiji Zhou | Yue Zhang | Donghong Ji | Hao Tang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Abstract Meaning Representations (AMRs) capture sentence-level semantics structural representations to broad-coverage natural sentences. We investigate parsing AMR with explicit dependency structures and interpretable latent structures. We generate the latent soft structure without additional annotations, and fuse both dependency and latent structure via an extended graph neural networks. The fused structural information helps our experiments results to achieve the best reported results on both AMR 2.0 (77.5% Smatch F1 on LDC2017T10) and AMR 1.0 ((71.8% Smatch F1 on LDC2014T12).

pdf bib
Dependency Graph Enhanced Dual-transformer Structure for Aspect-based Sentiment Classification
Hao Tang | Donghong Ji | Chenliang Li | Qiji Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Aspect-based sentiment classification is a popular task aimed at identifying the corresponding emotion of a specific aspect. One sentence may contain various sentiments for different aspects. Many sophisticated methods such as attention mechanism and Convolutional Neural Networks (CNN) have been widely employed for handling this challenge. Recently, semantic dependency tree implemented by Graph Convolutional Networks (GCN) is introduced to describe the inner connection between aspects and the associated emotion words. But the improvement is limited due to the noise and instability of dependency trees. To this end, we propose a dependency graph enhanced dual-transformer network (named DGEDT) by jointly considering the flat representations learnt from Transformer and graph-based representations learnt from the corresponding dependency graph in an iterative interaction manner. Specifically, a dual-transformer structure is devised in DGEDT to support mutual reinforcement between the flat representation learning and graph-based representation learning. The idea is to allow the dependency graph to guide the representation learning of the transformer encoder and vice versa. The results on five datasets demonstrate that the proposed DGEDT outperforms all state-of-the-art alternatives with a large margin.