The use of large language models (LLMs) as automated evaluation tools to assess the quality of generated natural language, known as ”LLMs-as-Judges”, has demonstrated promising capabilities and is rapidly gaining widespread attention. However, when applied to pairwise comparisons of candidate responses, LLM-based evaluators often exhibit selection bias. Specifically, their judgments may become inconsistent when the option positions or ID tokens are swapped, compromising the effectiveness and fairness of the evaluation result. To address this challenge, we introduce CalibraEval, a novel label-free method for mitigating selection bias during inference. Specifically, CalibraEval reformulates debiasing as an optimization task aimed at adjusting observed prediction distributions to align with unbiased prediction distributions. To solve this optimization problem, we propose a non-parametric order-preserving algorithm (NOA). This algorithm leverages the partial order relationships between model prediction distributions, thereby eliminating the need for explicit labels and precise mathematical function modeling. Empirical evaluations of LLMs in multiple representative benchmarks demonstrate that CalibraEval effectively mitigates selection bias and improves performance compared to existing debiasing methods. This work marks a step toward building more robust and unbiased automated evaluation frameworks, paving the way for improved reliability in AI-driven assessments. The code can be found at https://github.com/CSHaitao/CalibraEval.
Existing retrieval-augmented code generation (RACG) methods typically use an external retrieval module to fetch semantically similar code snippets used for generating subsequent fragments. However, even for consecutive code fragments, the content often diverges due to logical progression, resulting in a content gap. This gap undermines the performance of current RACG methods, as external retrieval modules based on content matching fail to infer the specific information need of LLMs to generate the next code fragment. Therefore, we propose SelfRACG, a novel paradigm that enables large language models (LLMs) to Self-express their information needs to enhance RACG. Specifically, SelfRACG includes an information need expression module and a two-stage information need-guided training strategy, which encourages LLMs to express their information need. Extensive experiments demonstrate that SelfRACG can retrieve external knowledge that better aligns with the LLM’s own information needs, resulting in superior generation performance compared to vanilla RACG. Moreover, both the training and deployment costs for retrieval in our framework are much lower than those of the strongest retrieval model.
Speech-to-text (S2T) generation systems frequently face challenges in low-resource scenarios, primarily due to the lack of extensive labeled datasets. One emerging solution is constructing virtual training samples by interpolating inputs and labels, which has notably enhanced system generalization in other domains. Despite its potential, this technique’s application in S2T tasks has remained under-explored. In this paper, we delve into the utility of interpolation augmentation, guided by several pivotal questions. Our findings reveal that employing an appropriate strategy in interpolation augmentation significantly enhances performance across diverse tasks, architectures, and data scales, offering a promising avenue for more robust S2T systems in resource-constrained settings.