Qi Mao


2025

pdf bib
CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
Shiting Huang | Zhen Fang | Zehui Chen | Siyu Yuan | Junjie Ye | Yu Zeng | Lin Chen | Qi Mao | Feng Zhao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool.

2012

pdf bib
Domain Adaptation for Coreference Resolution: An Adaptive Ensemble Approach
Jian Bo Yang | Qi Mao | Qiao Liang Xiang | Ivor Wai-Hung Tsang | Kian Ming Adam Chai | Hai Leong Chieu
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning