Pooyan Fazli
2025
VideoPASTA: 7K Preference Pairs That Matter for Video-LLM Alignment
Yogesh Kulkarni
|
Pooyan Fazli
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Video-language models (Video-LLMs) excel at understanding video content but struggle with spatial relationships, temporal ordering, and cross-frame continuity. To address these limitations, we introduce VideoPASTA (Preference Alignment with Spatio-Temporal-Cross Frame Adversaries), a framework that enhances Video-LLMs through targeted preference optimization. VideoPASTA trains models to distinguish accurate video representations from carefully crafted adversarial examples that deliberately violate spatial, temporal, or cross-frame relationships. With only 7,020 preference pairs and Direct Preference Optimization, VideoPASTA enables models to learn robust representations that capture fine-grained spatial details and long-range temporal dynamics. Experiments demonstrate that VideoPASTA is model agnostic and significantly improves performance, for example, achieving gains of up to + 3.8 percentage points on LongVideoBench, +4.1 on VideoMME, and +4.0 on MVBench, when applied to various state-of-the-art Video-LLMs. These results demonstrate that targeted alignment, rather than massive pretraining or architectural modifications, effectively addresses core video-language challenges. Notably, VideoPASTA achieves these improvements without any human annotation or captioning, relying solely on 32-frame sampling. This efficiency makes our approach a scalable plug-and-play solution that seamlessly integrates with existing models while preserving their original capabilities.
2024
OSCaR: Object State Captioning and State Change Representation
Nguyen Nguyen
|
Jing Bi
|
Ali Vosoughi
|
Yapeng Tian
|
Pooyan Fazli
|
Chenliang Xu
Findings of the Association for Computational Linguistics: NAACL 2024
The capability of intelligent models to extrapolate and comprehend changes in object states is a crucial yet demanding aspect of AI research, particularly through the lens of human interaction in real-world settings. This task involves describing complex visual environments, identifying active objects, and interpreting their changes as conveyed through language. Traditional methods, which isolate object captioning and state change detection, offer a limited view of dynamic environments. Moreover, relying on a small set of symbolic words to represent changes has restricted the expressiveness of language. To address these challenges, in this paper, we introduce the Object State Captioning and State Change Representation (OSCaR) dataset and benchmark. OSCaR consists of 14,084 annotated video segments with nearly 1,000 unique objects from various egocentric video collections. It sets a new testbed for evaluating Multimodal Large Language Models (MLLMs). Our experiments demonstrate that while MLLMs show some skill, they lack a full understanding of object state changes. The benchmark includes a fine-tuned model that, despite initial capabilities, requires significant improvements in accuracy and generalization ability for effective understanding of these changes. Our code and dataset are available at https://github.com/nguyennm1024/OSCaR.
Search
Fix author
Co-authors
- Jing Bi 1
- Yogesh Kulkarni 1
- Nguyen Nguyen 1
- Yapeng Tian 1
- Ali Vosoughi 1
- show all...