Event Extraction (EE) involves automatically identifying and extracting structured information about events from unstructured text, including triggers, event types, and arguments. Traditional discriminative models demonstrate high precision but often exhibit limited recall, particularly for nuanced or infrequent events. Conversely, generative approaches leveraging Large Language Models (LLMs) provide higher semantic flexibility and recall but suffer from hallucinations and inconsistent predictions. To address these challenges, we propose Agreement-based Reflective Inference System (ARIS), a hybrid approach combining a Self Mixture of Agents with a discriminative sequence tagger. ARIS explicitly leverages structured model consensus, confidence-based filtering, and an LLM reflective inference module to reliably resolve ambiguities and enhance overall event prediction quality. We further investigate decomposed instruction fine-tuning for enhanced LLM event extraction understanding. Experiments demonstrate our approach outperforms existing state-of-the-art event extraction methods across three benchmark datasets.
Researchers have explored novel methods for both semantic indexing and information retrieval of biomedical research articles. Moreover, most solutions treat each task independently. However, both tasks are related. For instance, semantic indexes are generally used to filter results from an information retrieval system. Hence, one task can potentially improve the performance of models trained for the other task. Thus, this study proposes a unified retriever-ranker-based model to tackle the tasks of information retrieval (IR) and semantic indexing (SI). Particularly, our proposed model can adapt to rapid shifts in scientific research. Our results show that the model effectively leverages task similarity to improve the robustness to dataset shift. For SI, the Micro f1 score increases by 8% and the LCA-F score improves by 5%. For IR, the MAP increases by 5% on average.
Public health surveillance and tracking virus via social media can be a useful digital tool for contact tracing and preventing the spread of the virus. Nowadays, large volumes of COVID-19 tweets can quickly be processed in real-time to offer information to researchers. Nonetheless, due to the absence of labeled data for COVID-19, the preliminary supervised classifier or semi-supervised self-labeled methods will not handle non-spherical data with adequate accuracy. With the seasonal influenza and novel Coronavirus having many similar symptoms, we propose using few shot learning to fine-tune a semi-supervised model built on unlabeled COVID-19 and previously labeled influenza dataset that can provide in- sights into COVID-19 that have not been investigated. The experimental results show the efficacy of the proposed model with an accuracy of 86%, identification of Covid-19 related discussion using recently collected tweets.
As social distancing, self-quarantines, and travel restrictions have shifted a lot of pandemic conversations to social media so does the spread of hate speech. While recent machine learning solutions for automated hate and offensive speech identification are available on Twitter, there are issues with their interpretability. We propose a novel use of learned feature importance which improves upon the performance of prior state-of-the-art text classification techniques, while producing more easily interpretable decisions. We also discuss both technical and practical challenges that remain for this task.