Peng Shu


2025

pdf bib
Real-time Ad Retrieval via LLM-generative Commercial Intention for Sponsored Search Advertising
Tongtong Liu | Zhaohui Wang | Meiyue Qin | Zenghui Lu | Xudong Chen | Yuekui Yang | Peng Shu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The integration of Large Language Models (LLMs) with retrieval systems has shown promising potential in retrieving documents (docs) or advertisements (ads) for a given query. Existing LLM-based retrieval methods generate numeric or content-based DocIDs to retrieve docs/ads. However, the one-to-few mapping between numeric IDs and docs, along with the time-consuming content extraction, leads to semantic inefficiency and limits the scalability of existing methods on large-scale corpora. In this paper, we propose the **R**eal-time **A**d **RE**trieval (RARE) framework, which leverages LLM-generated text called Commercial Intentions (CIs) as an intermediate semantic representation to directly retrieve ads for queries in real-time. These CIs are generated by a customized LLM injected with commercial knowledge, enhancing its domain relevance. Each CI corresponds to multiple ads, yielding a lightweight and scalable set of CIs. RARE has been implemented in a real-world online system, handling daily search volumes in billions. The online implementation has yielded significant benefits: a 5.04% increase in consumption, a 6.37% rise in Gross Merchandise Volume (GMV), a 1.28% enhancement in click-through rate (CTR) and a 5.29% increase in shallow conversions. Extensive offline experiments show RARE’s superiority over ten competitive baselines in four major categories.

pdf bib
RAVEN++: Pinpointing Fine-Grained Violations in Advertisement Videos with Active Reinforcement Reasoning
Deyi Ji | Yuekui Yang | Liqun Liu | Peng Shu | Haiyang Wu | Shaogang Tang | Xudong Chen | Shaoping Ma | Tianrun Chen | Lanyun Zhu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Advertising (Ad) is a cornerstone of the digital economy, yet the moderation of video advertisements remains a significant challenge due to their complexity and the need for precise violation localization. While recent advancements, such as the RAVEN model, have improved coarse-grained violation detection, critical gaps persist in fine-grained understanding, explainability, and generalization. To address these limitations, we propose RAVEN++, a novel framework that introduces three key innovations: 1) Active Reinforcement Learning (RL), which dynamically adapts training to samples of varying difficulty; 2) Fine-Grained Violation Understanding, achieved through hierarchical reward functions and reasoning distillation; and 3) Progressive Multi-Stage Training, which systematically combines knowledge injection, curriculum-based passive RL, and active RL. Extensive experiments on both public and proprietary datasets, on both offline scenarios and online deployed A/B Testing, demonstrate that RAVEN++ outperforms general-purpose LLMs and specialized models like RAVEN in terms of fine-grained violation understanding, reasoning capabilities, and generalization ability.