Peiyang Liu


2025

pdf bib
Structural Reward Model: Enhancing Interpretability, Efficiency, and Scalability in Reward Modeling
Xiaoyu Liu | Di Liang | Hongyu Shan | Peiyang Liu | Yonghao Liu | Muling Wu | Yuntao Li | Xianjie Wu | Li Miao | Jiangrong Shen | Minlong Peng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Reward Models (RMs) are key components for evaluating and guiding language model outputs. However, traditional scalar RMs often struggle with incorporating contextual and background information during inference, leading to incomplete evaluations. Generative RMs (GRMs) attempt to address these limitations by generating intermediate reasoning steps. Yet, their uncontrolled black-box nature and inefficiency due to sequential decoding hinder their industrial deployment. Industrial scenarios, such as search and recommendation systems, often involve single-domain tasks requiring evaluation along specific dimensions. In such contexts, diagnosing “bad cases” necessitates structured feedback to identify and optimize dimension-specific issues.In this paper, we propose the Structural Reward Model (SRM), a modular and interpretable framework integrating side-branch models as auxiliary feature generators. By introducing fine-grained dimensions, SRMs enable interpretable and efficient evaluation, facilitating targeted diagnostics and optimization. This structured approach ensures adaptability and scalability for industrial applications.Through comprehensive experiments, we demonstrate that SRMs outperform scalar RMs and GRMs in robustness and alignment with human preferences. The modular design further supports efficient optimization for practical scenarios, allowing SRM to provide a practical reward modeling solution for industry.

2022

pdf bib
Label Smoothing for Text Mining
Peiyang Liu | Xiangyu Xi | Wei Ye | Shikun Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Current text mining models are trained with 0-1 hard label that indicates whether an instance belongs to a class, ignoring rich information of the relevance degree. Soft label, which involved each label of varying degrees than the hard label, is considered more suitable for describing instances. The process of generating soft labels from hard labels is defined as label smoothing (LS). Classical LS methods focus on universal data mining tasks so that they ignore the valuable text features in text mining tasks. This paper presents a novel keyword-based LS method to automatically generate soft labels from hard labels via exploiting the relevance between labels and text instances. Generated soft labels are then incorporated into existing models as auxiliary targets during the training stage, capable of improving models without adding any extra parameters. Results of extensive experiments on text classification and large-scale text retrieval datasets demonstrate that soft labels generated by our method contain rich knowledge of text features, improving the performance of corresponding models under both balanced and unbalanced settings.

2021

pdf bib
Improving Embedding-based Large-scale Retrieval via Label Enhancement
Peiyang Liu | Xi Wang | Sen Wang | Wei Ye | Xiangyu Xi | Shikun Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.

pdf bib
QuadrupletBERT: An Efficient Model For Embedding-Based Large-Scale Retrieval
Peiyang Liu | Sen Wang | Xi Wang | Wei Ye | Shikun Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The embedding-based large-scale query-document retrieval problem is a hot topic in the information retrieval (IR) field. Considering that pre-trained language models like BERT have achieved great success in a wide variety of NLP tasks, we present a QuadrupletBERT model for effective and efficient retrieval in this paper. Unlike most existing BERT-style retrieval models, which only focus on the ranking phase in retrieval systems, our model makes considerable improvements to the retrieval phase and leverages the distances between simple negative and hard negative instances to obtaining better embeddings. Experimental results demonstrate that our QuadrupletBERT achieves state-of-the-art results in embedding-based large-scale retrieval tasks.