This paper presents R-BPE, a lightweight framework for adapting existing Byte-Pair Encoding (BPE) tokenizers to better support a specified target language.It reuses tokens from user-excluded languages and creates ID-based maps to resolve the new tokens of the chosen language.We evaluate R-BPE on Arabic as a target language. R-BPE reduced subword fertility by an average of 24.4% across the LLaMA 3.1 8B, Command R 35B, and Qwen 3 8B models.Applied to LLaMA 3.1 8B in continued pretraining mode, R-BPE yields a 7.33% reduction in training time. On the ArabicMMLU benchmark, the resulting model improved by 5.09 points on five in-domain topics and matched the original model’s overall performance.It also preserved performance on EnglishMMLU. R-BPE effectively leverages existing models’ tokenizers, embedding layers, and performance to better support target languages without incurring model size changes. We release an R-BPE implementation that is compatible with HuggingFace interfaces and thereby readily applicable to a wide range of existing models at https://acr.ps/1L9GPmL.
Relational entity extraction is key in building knowledge graphs. A relational entity has a source, a tail and a type. In this paper, we consider Arabic text and introduce evidence enrichment which intuitively informs models for better predictions. Relational evidence is an expression in the text that explains how sources and targets relate. This paper augments the existing SREDFM relational extraction dataset with evidence annotation to its 2.9-million Arabic relations. We leverage the augmented dataset to build AREEj, a relation extraction with evidence model from Arabic documents. The evidence augmentation model we constructed to complete the dataset achieved .82 F1-score (.93 precision, .73 recall). The target AREEj outperformed SOTA mREBEL with .72 F1-score (.78 precision, .66 recall).
In this paper, we present our submission for the WojoodNER 2024 Shared Tasks addressing flat and nested sub-tasks (1, 2). We experiment with three different approaches. We train (i) an Arabic fine-tuned version of BLOOMZ-7b-mt, GEMMA-7b, and AraBERTv2 on multi-label token classifications task; (ii) two AraBERTv2 models, on main types and sub-types respectively; and (iii) one model for main types and four for the four sub-types. Based on the Wojood NER 2024 test set results, the three fine-tuned models performed similarly with AraBERTv2 favored (F1: Flat=.8780 Nested=.9040). The five model approach performed slightly better (F1: Flat=.8782 Nested=.9043).
This paper details our submission to the WojoodNER Shared Task 2024, leveraging in-context learning with large language models for Arabic Named Entity Recognition. We utilized the Command R model, to perform fine-grained NER on the Wojood-Fine corpus. Our primary approach achieved an F1 score of 0.737 and a recall of 0.756. Post-processing the generated predictions to correct format inconsistencies resulted in an increased recall of 0.759, and a similar F1 score of 0.735. A multi-level prompting method and aggregation of outputs resulted in a lower F1 score of 0.637. Our results demonstrate the potential of ICL for Arabic NER while highlighting challenges related to LLM output consistency.