Norah A. Alzahrani


2025

pdf bib
BALSAM: A Platform for Benchmarking Arabic Large Language Models
Rawan Nasser Almatham | Kareem Mohamed Darwish | Raghad Al-Rasheed | Waad Thuwaini Alshammari | Muneera Alhoshan | Amal Almazrua | Asma Al Wazrah | Mais Alheraki | Firoj Alam | Preslav Nakov | Norah A. Alzahrani | Eman Albilali | Nizar Habash | Abdelrahman Mustafa El-Sheikh | Muhammad Elmallah | Hamdy Mubarak | Zaid Alyafeai | Mohamed Anwar | Haonan Li | Ahmed Abdelali | Nora Altwairesh | Maram Hasanain | Abdulmohsen Al-Thubaity | Shady Shehata | Bashar Alhafni | Injy Hamed | Go Inoue | Khalid N. Elmadani | Ossama Obeid | Fatima Haouari | Tamer Elsayed | Emad A. Alghamdi | Khalid Almubarak | Saied Alshahrani | Ola Aljareh | Safa Alajlan | Areej Alshaqarawi | Maryam Alshihri | Sultana Alghurabi | Atikah Alzeghayer | Afrah Altamimi | Abdullah Alfaifi | Abdulrahman M Alosaimy
Proceedings of The Third Arabic Natural Language Processing Conference

The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.

pdf bib
AraEval: An Arabic Multi-Task Evaluation Suite for Large Language Models
Alhanoof Althnian | Norah A. Alzahrani | Shaykhah Z. Alsubaie | Eman Albilali | Ahmed Abdelali | Nouf M. Alotaibi | M Saiful Bari | Yazeed Alnumay | Abdulhamed Alothaimen | Maryam Saif | Shahad D. Alzaidi | Faisal Abdulrahman Mirza | Yousef Almushayqih | Mohammed Al Saleem | Ghadah Alabduljabbar | Abdulmohsen Al-Thubaity | Areeb Alowisheq | Nora Al-Twairesh
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The rapid advancements of Large Language models (LLMs) necessitate robust benchmarks. In this paper, we present AraEval, a pioneering and comprehensive evaluation suite specifically developed to assess the advanced knowledge, reasoning, truthfulness, and instruction- following capabilities of foundation models in the Arabic context. AraEval includes a diverse set of evaluation tasks that test various dimensions of knowledge and reasoning, with a total of 24,378 samples. These tasks cover areas such as linguistic understanding, factual recall, logical inference, commonsense reasoning, mathematical problem-solving, and domain-specific expertise, ensuring that the evaluation goes beyond basic language comprehension. It covers multiple domains of knowledge, such as science, history, religion, and literature, ensuring that the LLMs are tested on a broad spectrum of topics relevant to Arabic-speaking contexts. AraEval is designed to facilitate comparisons across different foundation models, enabling LLM developers and users to benchmark perfor- mance effectively. In addition, it provides diagnostic insights to identify specific areas where models excel or struggle, guiding further development. AraEval datasets can be found at https://huggingface.co/collections/humain-ai/araeval-datasets-687760e04b12a7afb429a4a0.