Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in complex multimodal tasks. While MLLMs excel at visual perception and reasoning in third-person and egocentric videos, they are prone to hallucinations, generating coherent yet inaccurate responses. We present EGOILLUSION, a first benchmark to evaluate MLLM hallucinations in egocentric videos. EGOILLUSION comprises 1,400 videos paired with 8,000 human-annotated open and closed-ended questions designed to trigger hallucinations in both visual and auditory cues in egocentric videos. Evaluations across ten MLLMs reveal significant challenges, including powerful models like GPT-4o and Gemini, achieving only 59% accuracy. EGOILLUSION lays the foundation in developing robust benchmarks to evaluate the effectiveness of MLLMs and spurs the development of better egocentric MLLMs with reduced hallucination rates. Our benchmark will be open-sourced for reproducibility
The rapid progress of Large Language Models (LLMs) has empowered omni models to act as voice assistants capable of understanding spoken dialogues. These models can process multimodal inputs beyond text, such as speech and visual data, enabling more context-aware interactions. However, current benchmarks fall short in comprehensively evaluating how well these models generate context-aware responses, particularly when it comes to implicitly understanding fine-grained speech characteristics, such as pitch, emotion, timbre, and volume or the environmental acoustic context such as background sounds. Additionally, they inadequately assess the ability of models to align paralinguistic cues with complementary visual signals to inform their responses. To address these gaps, we introduce MultiVox, the first omni voice assistant benchmark designed to evaluate the ability of voice assistants to integrate spoken and visual cues including paralinguistic speech features for truly multimodal understanding. Specifically, MultiVox includes 1000 human-annotated and recorded speech dialogues that encompass diverse paralinguistic features and a range of visual cues such as images and videos. Our evaluation on 10 state-of-the-art models reveals that, although humans excel at these tasks, current open-source models consistently struggle to produce contextually grounded responses.
Open-vocabulary audio language models (ALMs), like Contrastive Language Audio Pretraining (CLAP), represent a promising new paradigm for audio-text retrieval using natural language queries. In this paper, for the first time, we perform controlled experiments on various benchmarks to show that existing ALMs struggle to generalize to linguistic variations in textual queries. To address this issue, we propose RobustCLAP, a novel and compute-efficient technique to learn audio-language representations agnostic to linguistic variations. Specifically, we reformulate the contrastive loss used in CLAP architectures by introducing a multi-view contrastive learning objective, where paraphrases are treated as different views of the same audio scene and use this for training. Our proposed approach improves the text-to-audio retrieval performance of CLAP by 0.8%-13% across benchmarks and enhances robustness to linguistic variation. We make our code publicly available