Narayanan Sadagopan


2025

pdf bib
Incorporating Diverse Perspectives in Cultural Alignment: Survey of Evaluation Benchmarks Through A Three-Dimensional Framework
Meng-Chen Wu | Si-Chi Chin | Tess Wood | Ayush Goyal | Narayanan Sadagopan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) increasingly serve diverse global audiences, making it critical for responsible AI deployment across cultures. While recent works have proposed various approaches to enhance cultural alignment in LLMs, a systematic analysis of their evaluation benchmarks remains needed. We propose a novel framework that conceptualizes alignment along three dimensions: Cultural Group (who to align with), Cultural Elements (what to align), and Awareness Scope (how to align: majority-focused vs. diversity-aware). Through this framework, we analyze 105 cultural alignment evaluation benchmarks, revealing significant imbalances: Region (37.9%) and Language (28.9%) dominate Cultural Group representation; Social and Political Relations (25.1%) and Speech and Language (20.9%) concentrate Cultural Elements coverage; and an overwhelming majority (97.1%) of datasets adopt majority-focused Awareness Scope approaches. In a case study examining AI safety evaluation across nine Asian countries (Section 5), we demonstrate how our framework reveals critical gaps between existing benchmarks and real-world cultural biases identified in the study, providing actionable guidance for developing more comprehensive evaluation resources tailored to specific deployment contexts.

2024

pdf bib
AXCEL: Automated eXplainable Consistency Evaluation using LLMs
P Aditya Sreekar | Sahil Verma | Suransh Chopra | Abhishek Persad | Sarik Ghazarian | Narayanan Sadagopan
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) are widely used in both industry and academia for various tasks, yet evaluating the consistency of generated text responses continues to be a challenge. Traditional metrics like ROUGE and BLEU show a weak correlation with human judgment. More sophisticated metrics using Natural Language Inference (NLI) have shown improved correlations but are complex to implement, require domain-specific training due to poor cross-domain generalization, and lack explainability. More recently, prompt-based metrics using LLMs as evaluators have emerged; while they are easier to implement, they still lack explainability and depend on task-specific prompts, which limits their generalizability. This work introduces Automated eXplainable Consistency Evaluation using LLMs (AXCEL), a prompt-based consistency metric which offers explanations for the consistency scores by providing detailed reasoning and pinpointing inconsistent text spans. AXCEL is also a generalizable metric which can be adopted to multiple tasks without changing the prompt. AXCEL outperforms both non-prompt and prompt-based state-of-the-art (SOTA) metrics in detecting inconsistencies across summarization by 8.7%, free text generation by 6.2%, and data-to-text conversion tasks by 29.4%. We also evaluate the influence of underlying LLMs on prompt based metric performance and recalibrate the SOTA prompt-based metrics with the latest LLMs for fair comparison. Further, we show that AXCEL demonstrates strong performance using open source LLMs.