Nabeel Seedat


2025

pdf bib
Beyond Pointwise Scores: Decomposed Criteria-Based Evaluation of LLM Responses
Fangyi Yu | Nabeel Seedat | Drahomira Herrmannova | Frank Schilder | Jonathan Richard Schwarz
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Evaluating long-form answers in high-stakes domains such as law or medicine remains a fundamental challenge. Standard metrics like BLEU and ROUGE fail to capture semantic correctness, and current LLM-based evaluators often reduce nuanced aspects of answer quality into a single undifferentiated score. We introduce DeCE, a decomposed LLM evaluation framework that separates precision (factual accuracy and relevance) and recall (coverage of required concepts), using instance-specific criteria automatically extracted from gold answer requirements. DeCE is model-agnostic and domain-general, requiring no predefined taxonomies or handcrafted rubrics. We instantiate DeCE to evaluate different LLMs on a real-world legal QA task involving multi-jurisdictional reasoning and citation grounding. DeCE achieves substantially stronger correlation with expert judgments (r=0.78), compared to traditional metrics (r=0.12) and pointwise LLM scoring (r=0.35). It also reveals interpretable trade-offs: generalist models favor recall, while specialized models favor precision. Importantly, only 11.95% of LLM-generated criteria required expert revision, underscoring DeCE’s scalability. DeCE offers an interpretable and actionable LLM evaluation framework in expert domains.