Moy Yuan


2025

pdf bib
TCP: a Benchmark for Temporal Constraint-Based Planning
Zifeng Ding | Sikuan Yan | Moy Yuan | Xianglong Hu | Fangru Lin | Andreas Vlachos
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Temporal reasoning and planning are essential capabilities for large language models (LLMs), yet most existing benchmarks evaluate them in isolation and under limited forms of complexity. To address this gap, we introduce the Temporal Constraint-based Planning (TCP) benchmark, that jointly assesses both capabilities. Each instance in TCP features a naturalistic dialogue around a collaborative project, where diverse and interdependent temporal constraints are explicitly or implicitly expressed, and models must infer an optimal schedule that satisfies all constraints. To construct TCP, we generate abstract problem prototypes that are then paired with realistic scenarios from various domains and enriched into dialogues using an LLM. A human quality check is performed on a sampled subset to confirm the reliability of our benchmark. We evaluate state-of-the-art LLMs and find that even the strongest models may struggle with TCP, highlighting its difficulty and revealing limitations in LLMs’ temporal constraint-based planning abilities. We analyze underlying failure cases, open source our benchmark, and hope our findings can inspire future research.

pdf bib
Toward Reliable Clinical Coding with Language Models: Verification and Lightweight Adaptation
Moy Yuan | Han-Chin Shing | Mitch Strong | Chaitanya Shivade
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Accurate clinical coding is essential for healthcare documentation, billing, and decision-making. While prior work shows that off-the-shelf LLMs struggle with this task, evaluations based on exact match metrics often overlook errors where predicted codes are hierarchically close but incorrect. Our analysis reveals that such hierarchical misalignments account for a substantial portion of LLM failures. We show that lightweight interventions, including prompt engineering and small-scale fine-tuning, can improve accuracy without the computational overhead of search-based methods. To address hierarchically near-miss errors, we introduce clinical code verification as both a standalone task and a pipeline component. To mitigate the limitations in existing datasets, such as incomplete evidence and inpatient bias in MIMIC, we release an expert double-annotated benchmark of outpatient clinical notes with ICD-10 codes. Our results highlight verification as an effective and reliable step toward improving LLM-based medical coding.

2024

pdf bib
Zero-Shot Fact-Checking with Semantic Triples and Knowledge Graphs
Moy Yuan | Andreas Vlachos
Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024)

Despite progress in automated fact-checking, most systems require a significant amount of labeled training data, which is expensive. In this paper, we propose a novel zero-shot method, which instead of operating directly on the claim and evidence sentences, decomposes them into semantic triples augmented using external knowledge graphs, and uses large language models trained for natural language inference. This allows it to generalize to adversarial datasets and domains that supervised models require specific training data for. Our empirical results show that our approach outperforms previous zero-shot approaches on FEVER, FEVER-Symmetric, FEVER 2.0, and Climate-FEVER, while being comparable or better than supervised models on the adversarial and the out-of-domain datasets.

pdf bib
DIALIGHT: Lightweight Multilingual Development and Evaluation of Task-Oriented Dialogue Systems with Large Language Models
Songbo Hu | Xiaobin Wang | Moy Yuan | Anna Korhonen | Ivan Vulić
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

We present DIALIGHT, a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems which facilitates systematic evaluations and comparisons between ToD systems using fine-tuning of Pretrained Language Models (PLMs) and those utilising the zero-shot and in-context learning capabilities of Large Language Models (LLMs). In addition to automatic evaluation, this toolkit features (i) a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level, and (ii) a microservice-based backend, improving efficiency and scalability. Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses. However, we also identify significant challenges of LLMs in adherence to task-specific instructions and generating outputs in multiple languages, highlighting areas for future research. We hope this open-sourced toolkit will serve as a valuable resource for researchers aiming to develop and properly evaluate multilingual ToD systems and will lower, currently still high, entry barriers in the field.

2023

pdf bib
A Systematic Study of Performance Disparities in Multilingual Task-Oriented Dialogue Systems
Songbo Hu | Han Zhou | Moy Yuan | Milan Gritta | Guchun Zhang | Ignacio Iacobacci | Anna Korhonen | Ivan Vulić
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Achieving robust language technologies that can perform well across the world’s many languages is a central goal of multilingual NLP. In this work, we take stock of and empirically analyse task performance disparities that exist between multilingual task-oriented dialogue (ToD) systems. We first define new quantitative measures of absolute and relative equivalence in system performance, capturing disparities across languages and within individual languages. Through a series of controlled experiments, we demonstrate that performance disparities depend on a number of factors: the nature of the ToD task at hand, the underlying pretrained language model, the target language, and the amount of ToD annotated data. We empirically prove the existence of the adaptation and intrinsic biases in current ToD systems: e.g., ToD systems trained for Arabic or Turkish using annotated ToD data fully parallel to English ToD data still exhibit diminished ToD task performance. Beyond providing a series of insights into the performance disparities of ToD systems in different languages, our analyses offer practical tips on how to approach ToD data collection and system development for new languages.