Large multimodal models (LMMs) have recently gained attention due to their effectiveness to understand and generate descriptions of visual content. Most existing LMMs are in English language. While few recent works explore multilingual image LMMs, to the best of our knowledge, moving beyond the English language for cultural and linguistic inclusivity is yet to be investigated in the context of video LMMs. In pursuit of more inclusive video LMMs, we introduce a multilingual Video LMM benchmark, named ViMUL-Bench, to evaluate Video LMMs across 14 languages, including both low- and high-resource languages: Arabic, Bengali, Chinese, English, French, German, Hindi, Japanese, Russian, Sinhala, Spanish, Swedish, Tamil, and Urdu. Our ViMUL-Bench is designed to rigorously test video LMMs across 15 categories including eight culturally diverse categories, ranging from lifestyles and festivals to foods and rituals and from local landmarks to prominent cultural personalities. ViMUL-Bench comprises both open-ended (short and long-form) and multiple-choice questions spanning various video durations (short, medium, and long) with 8k samples that are manually verified by native language speakers. In addition, we also introduce a machine translated multilingual video training set comprising 1.2 million samples and develop a simple multilingual video LMM, named ViMUL, that is shown to provide a better tradeoff between high-and low-resource languages for video understanding. We hope our ViMUL-Bench and multilingual video LMM along with a large-scale multilingual video training set will help ease future research in developing cultural and linguistic inclusive multilingual video LMMs. Our proposed benchmark, video LMM and training data will be publicly released.
Fine-grained understanding and species-specific, multimodal question answering are vital for advancing biodiversity conservation and ecological monitoring. However, existing multimodal large language models (MM-LLMs) face challenges when it comes to specialized topics like avian species, making it harder to provide accurate and contextually relevant information in these areas. To address this limitation, we introduce the **MAviS-Dataset**, a large-scale multimodal avian species dataset that integrates image, audio, and text modalities for over 1,000 bird species, comprising both pretraining and instruction-tuning subsets enriched with structured question–answer pairs. Building on the MAviS-Dataset, we introduce **MAviS-Chat**, a multimodal LLM that supports audio, vision, and text designed for fine-grained species understanding, multimodal question answering, and scene-specific description generation. Finally, for quantitative evaluation, we present **MAviS-Bench**, a benchmark of over 25,000 Q&A pairs designed to assess avian species-specific perceptual and reasoning abilities across modalities. Experimental results show that MAviS-Chat outperforms the baseline MiniCPM-o-2.6 by a large margin, achieving state-of-the-art open-source results and demonstrating the effectiveness of our instruction-tuned MAviS-Dataset. Our findings highlight the necessity of domain-adaptive MM-LLMs for ecological applications. Our code, training data, evaluation benchmark, and models are available at https://github.com/yevheniia-uv/MAviS.
Recent advancements in speech-to-speech dialogue systems leverage LLMs for multimodal interactions, yet they remain hindered by fine-tuning requirements, high computational overhead, and text-speech misalignment. Existing speech-enabled LLMs often degrade conversational quality by modifying the LLM, thereby compromising its linguistic capabilities. In contrast, we propose LLMVoX, a lightweight 30M-parameter, LLM-agnostic, autoregressive streaming TTS system that generates high-quality speech with low latency, while fully preserving the capabilities of the base LLM. Our approach achieves a significantly lower Word Error Rate compared to speech-enabled LLMs, while operating at comparable latency. By decoupling speech synthesis from LLM processing via a multi-queue token streaming system, LLMVoX enables seamless, infinite-length dialogues. Its plug-and-play design also facilitates extension to various tasks with different backbones. Furthermore, LLMVoX generalizes to new languages with minimal dataset adaptation, attaining a low Character Error Rate on an Arabic speech task. Evaluations demonstrate that LLMVoX matches or surpasses existing speech-enabled LLMs in both speech quality and latency, while maintaining the original linguistic strengths of the LLM. Additionally, we have integrated LLMVoX with a Vision-Language Model to create an omni-model with speech, text, and vision capabilities, without requiring additional multimodal training.