Dehumanization, i.e., denying human qualities to individuals or groups, is a particularly harmful form of hate speech that can normalize violence against marginalized communities. Despite advances in NLP for detecting general hate speech, approaches to identifying dehumanizing language remain limited due to scarce annotated data and the subtle nature of such expressions. In this work, we systematically evaluate four state-of-the-art large language models (LLMs) — Claude, GPT, Mistral, and Qwen — for dehumanization detection.Our results show that only one model—Claude—achieves strong performance (over 80% F1) under an optimized configuration, while others, despite their capabilities, perform only moderately. Performance drops further when distinguishing dehumanization from related hate types such as derogation. We also identify systematic disparities across target groups: models tend to over-predict dehumanization for some identities (e.g., Gay men), while under-identifying it for others (e.g., Refugees). These findings motivate the need for systematic, group-level evaluation when applying pretrained language models to dehumanization detection tasks.
Creating globally inclusive AI systems demands datasets reflecting diverse social norms. Iran, with its unique cultural blend, offers an ideal case study, with Farsi adding linguistic complexity. In this work, we introduce the Iranian Social Norms (ISN) dataset, a novel collection of 1,699 Iranian social norms, including environments, demographic features, and scope annotation, alongside English translations. Our evaluation of 6 Large Language Models (LLMs) in classifying Iranian social norms, using a variety of prompts, uncovered critical insights into the impact of geographic and linguistic context. Results revealed a substantial performance gap in LLMs’ comprehension of Iranian norms. Notably, while the geographic context in English prompts enhanced the performance, this effect was absent in Farsi, pointing to nuanced linguistic challenges. Particularly, performance was significantly worse for Iran-specific norms, emphasizing the importance of culturally tailored datasets. As the first Farsi dataset for social norm classification, ISN will facilitate crucial cross-cultural analyses, shedding light on how values differ across contexts and cultures.
As Large Language Models are increasingly deployed in high-stakes domains, their ability to detect false assumptions and reason critically is crucial for ensuring reliable outputs. False-premise questions (FPQs) serve as an important evaluation method by exposing cases where flawed assumptions lead to incorrect responses. While existing benchmarks focus on single-hop FPQs, real-world reasoning often requires multi-hop inference, where models must verify consistency across multiple reasoning steps rather than relying on surface-level cues. To address this gap, we introduce MultiHoax, a benchmark for evaluating LLMs’ ability to handle false premises in complex, multi-step reasoning tasks. Our dataset spans seven countries and ten diverse knowledge categories, using Wikipedia as the primary knowledge source to enable cross-regional factual reasoning. Experiments reveal that state-of-the-art LLMs struggle to detect false premises across different countries, knowledge categories, and multi-hop reasoning types, highlighting the need for improved false premise detection and more robust multi-hop reasoning capabilities in LLMs.
As Natural Language Processing models become increasingly embedded in everyday life, ensuring that these systems can measure and mitigate bias is critical. While substantial work has been done to identify and mitigate gender bias in English, Farsi remains largely underexplored. This paper presents the first comprehensive study of gender bias in language models in Farsi across three tasks: emotion analysis, question answering, and hurtful sentence completion. We assess a range of language models across all the tasks in zero-shot settings. By adapting established evaluation frameworks for Farsi, we uncover patterns of gender bias that differ from those observed in English, highlighting the urgent need for culturally and linguistically inclusive approaches to bias mitigation in NLP.