Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions. Our method is being deployed in production.
Retrieval-augmented generation (RAG) enhances the quality of LLM generation by providing relevant chunks, but retrieving accurately from external knowledge remains challenging due to missing contextually important words in query. We present Word2Passage, a novel approach that improves retrieval accuracy by optimizing word importance in query expansion. Our method generates references at word, sentence, and passage levels for query expansion, then determines word importance by considering both their reference level origin and characteristics derived from query types and corpus analysis. Specifically, our method assigns distinct importance scores to words based on whether they originate from word, sentence, or passage-level references. Extensive experiments demonstrate that Word2Passage outperforms existing methods across various datasets and LLM configurations, effectively enhancing both retrieval accuracy and generation quality. The code is publicly available at https://github.com/DISL-Lab/Word2Passage
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations. Current approaches focus on using reinforcement learning with human feedback (RLHF) to improve model alignment, which works by transforming coarse human preferences of LLM outputs into a feedback signal that guides the model learning process. However, because this approach operates on sequence-level feedback, it lacks the precision to identify the exact parts of the output affecting user preferences. To address this gap, we propose a method to enhance LLM alignment through fine-grained token-level supervision. Specifically, we ask annotators to minimally edit less preferred responses within the standard reward modeling dataset to make them more favorable, ensuring changes are made only where necessary while retaining most of the original content. The refined dataset is used to train a token-level reward model, which is then used for training our fine-grained Proximal Policy Optimization (PPO) model. Our experiment results demonstrate that this approach can improve LLM performance by up to 5.1% in terms of win rate against the reference model, compared with the traditional PPO model.
Named Entity Recognition (NER) plays a pivotal role in medical Natural Language Processing (NLP). Yet, there has not been an open-source medical NER dataset specifically for the Korean language. To address this, we utilized ChatGPT to assist in constructing the KBMC (Korean Bio-Medical Corpus), which we are now presenting to the public. With the KBMC dataset, we noticed an impressive 20% increase in medical NER performance compared to models trained on general Korean NER datasets. This research underscores the significant benefits and importance of using specialized tools and datasets, like ChatGPT, to enhance language processing in specialized fields such as healthcare.