Mingi Kim


2025

pdf bib
Learning to See through Sound: From VggCaps to Multi2Cap for Richer Automated Audio Captioning
Sangyeon Cho | Mingi Kim | Jinkwon Hwang | Jaehoon Go | Minuk Ma | Sunjae Yoon | Junyeong Kim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Automated Audio Captioning (AAC) aims to generate natural language descriptions of audio content, enabling machines to interpret and communicate complex acoustic scenes. However, current AAC datasets often suffer from short and simplistic captions, limiting model expressiveness and semantic depth. To address this, we introduce **VggCaps**, a new multi-modal dataset that pairs audio with corresponding video and leverages large language models (LLMs) to generate rich, descriptive captions. VggCaps significantly outperforms existing benchmarks in caption length, lexical diversity, and human-rated quality. Furthermore, we propose **Multi2Cap**, a novel AAC framework that learns audio-visual representations through a AV-grounding module during pre-training and reconstructs visual semantics using audio alone at inference. This enables visually grounded captioning in audio-only scenarios. Experimental results on Clotho and AudioCaps demonstrate that Multi2Cap achieves state-of-the-art performance across multiple metrics, validating the effectiveness of cross-modal supervision and LLM-based generation in advancing AAC.

2024

pdf bib
KoCoSa: Korean Context-aware Sarcasm Detection Dataset
Yumin Kim | Heejae Suh | Mingi Kim | Dongyeon Won | Hwanhee Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sarcasm is a way of verbal irony where someone says the opposite of what they mean, often to ridicule a person, situation, or idea. It is often difficult to detect sarcasm in the dialogue since detecting sarcasm should reflect the context (i.e., dialogue history). In this paper, we introduce a new dataset for the Korean dialogue sarcasm detection task, KoCoSa (Korean Context-aware Sarcasm Detection Dataset), which consists of 12.8K daily Korean dialogues and the labels for this task on the last response. To build the dataset, we propose an efficient sarcasm detection dataset generation pipeline: 1) generating new sarcastic dialogues from source dialogues with large language models, 2) automatic and manual filtering of abnormal and toxic dialogues, and 3) human annotation for the sarcasm detection task. We also provide a simple but effective baseline for the Korean sarcasm detection task trained on our dataset. Experimental results on the dataset show that our baseline system outperforms strong baselines like large language models, such as GPT-3.5, in the Korean sarcasm detection task. We show that the sarcasm detection task relies deeply on the existence of sufficient context. We will release the dataset at https://github.com/Yu-billie/KoCoSa_sarcasm_detection.