Mingchen Zhuge


2025

pdf bib
Beyond Outlining: Heterogeneous Recursive Planning for Adaptive Long-form Writing with Language Models
Ruibin Xiong | Yimeng Chen | Dmitrii Khizbullin | Mingchen Zhuge | Jürgen Schmidhuber
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Long-form writing agents require flexible integration and interaction across information retrieval, reasoning, and composition. Current approaches rely on predefined workflows and rigid thinking patterns to generate outlines before writing, resulting in constrained adaptability during writing. In this paper we propose WriteHERE, a general agent framework that achieves human-like adaptive writing through recursive task decomposition and dynamic integration of three fundamental task types: retrieval, reasoning, and composition. Our methodology features: 1) a planning mechanism that interleaves recursive task decomposition and execution, eliminating artificial restrictions on writing workflow; and 2) integration of task types that facilitates heterogeneous task decomposition. Evaluations on both fiction writing and technical report generation show that our method consistently outperforms state-of-the-art approaches across all automatic evaluation metrics, demonstrating the effectiveness and broad applicability of our proposed framework. We have publicly released our code and prompts to facilitate further research.

pdf bib
Data Interpreter: An LLM Agent for Data Science
Sirui Hong | Yizhang Lin | Bang Liu | Bangbang Liu | Binhao Wu | Ceyao Zhang | Danyang Li | Jiaqi Chen | Jiayi Zhang | Jinlin Wang | Li Zhang | Lingyao Zhang | Min Yang | Mingchen Zhuge | Taicheng Guo | Tuo Zhou | Wei Tao | Robert Tang | Xiangtao Lu | Xiawu Zheng | Xinbing Liang | Yaying Fei | Yuheng Cheng | Yongxin Ni | Zhibin Gou | Zongze Xu | Yuyu Luo | Chenglin Wu
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Model (LLM)-based agents have excelled in various domains but face significant challenges when applied to data science workflows due to their complex, multi-stage nature. Current LLM-based agents struggle with non-linear relationships, recursive dependencies, implicit data- and logic-dependent reasoning, and managing extensive context. In this paper, we introduce Data Interpreter, an LLM-based agent that addresses these challenges through hierarchical graph-based modeling to represent the complexity and a progressive strategy for step-by-step verification, refinement, and consistent context management. Extensive experiments confirm the effectiveness of Data Interpreter. On InfiAgent-DABench, it boosts performance by 25% (from 75.9% to 94.9%), and on machine learning and open-ended tasks, it lifts accuracy from 88% to 95% and from 60% to 97%, respectively. Moreover, our method surpasses state-of-the-art baselines by 26% on the MATH dataset. We will release the code upon publication.