Michael Chen


2025

pdf bib
Not-Just-Scaling Laws: Towards a Better Understanding of the Downstream Impact of Language Model Design Decisions
Emmy Liu | Amanda Bertsch | Lintang Sutawika | Lindia Tjuatja | Patrick Fernandes | Lara Marinov | Michael Chen | Shreya Singhal | Carolin Lawrence | Aditi Raghunathan | Kiril Gashteovski | Graham Neubig
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Improvements in language model capabilities are often attributed to increasing model size or training data, but in some cases smaller models trained on curated data or with different architectural decisions can outperform larger ones trained on more tokens. What accounts for this? To quantify the impact of these design choices, we meta-analyze 92 open-source pretrained models across a wide array of scales, including state-of-the-art open-weights models as well as less performant models and those with less conventional design decisions. We find that by incorporating features besides model size and number of training tokens, we can achieve a relative 3-28% increase in ability to predict downstream performance compared with using scale alone. Analysis of model design decisions reveal insights into data composition, such as the trade-off between language and code tasks at 15-25% code, as well as the negative impact of web data on truthfulness. Broadly, our framework lays a foundation for more systematic investigation of how model development choices shape final capabilities.

2019

pdf bib
CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense
Michael Chen | Mike D’Arcy | Alisa Liu | Jared Fernandez | Doug Downey
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP

Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 65.3% by the OpenAI GPT model.