Discovering customer intentions is crucial for automated service agents, yet existing intent clustering methods often fall short due to their reliance on embedding distance metrics and neglect of underlying semantic structures. To address these limitations, we propose an **LLM-in-the-loop (LLM-ITL)** intent clustering framework, integrating the language understanding capabilities of LLMs into conventional clustering algorithms. Specifically, this paper (1) examines the effectiveness of fine-tuned LLMs in semantic coherence evaluation and intent cluster naming, achieving over 95% accuracy aligned with human judgments; (2) designs an LLM-ITL framework that facilitates the iterative discovery of coherent intent clusters and the optimal number of clusters; and (3) introduces context-aware techniques tailored for customer service dialogue. Since existing English benchmarks lack sufficient semantic diversity and intent coverage, we further present a comprehensive Chinese dialogue intent dataset comprising over 100k real customer service calls with 1,507 human-annotated clusters. The proposed approaches significantly outperform LLM-guided baselines, achieving notable improvements in clustering quality, cost efficiency, and downstream applications. Combined with several best practices, our findings highlight the prominence of LLM-in-the-loop techniques for scalable dialogue data mining.
The rapid advancement of Chinese LLMs underscores the need for vertical-domain evaluations to ensure reliable applications. However, existing benchmarks often lack domain coverage and provide limited insights into the Chinese working context. Leveraging qualification exams as a unified framework for expertise evaluation, we introduce QualBench, the first multi-domain Chinese QA benchmark dedicated to localized assessment of Chinese LLMs. The dataset includes over 17,000 questions across six vertical domains, drawn from 24 Chinese qualifications to align with national policies and professional standards. Results reveal an interesting pattern of Chinese LLMs consistently surpassing non-Chinese models, with the Qwen2.5 model outperforming the more advanced GPT-4o, emphasizing the value of localized domain knowledge in meeting qualification requirements. The average accuracy of 53.98% reveals the current gaps in domain coverage within model capabilities. Furthermore, we identify performance degradation caused by LLM crowdsourcing, assess data contamination, and illustrate the effectiveness of prompt engineering and model fine-tuning, suggesting opportunities for future improvements through multi-domain RAG and Federated Learning. Data and code are publicly available at https://github.com/mengze-hong/QualBench.
Retrieval-based chatbots leverage human-verified Q&A knowledge to deliver accurate, verifiable responses, making them ideal for customer-centric applications where compliance with regulatory and operational standards is critical. To effectively handle diverse customer inquiries, augmenting the knowledge base with “similar questions” that retain semantic meaning while incorporating varied expressions is a cost-effective strategy. In this paper, we introduce the Similar Question Generation (SQG) task for LLM training and inference, proposing context-aware approaches to enable comprehensive semantic exploration and enhanced alignment with source question-answer relationships. We formulate optimization techniques for constructing in-context prompts and selecting an optimal subset of similar questions to expand chatbot knowledge under budget constraints. Both quantitative and human evaluations validate the effectiveness of these methods, achieving a 92% user satisfaction rate in a deployed chatbot system, reflecting an 18% improvement over the unaugmented baseline. These findings highlight the practical benefits of SQG and emphasize the potential of LLMs, not as direct chatbot interfaces, but in supporting non-generative systems for hallucination-free, compliance-guaranteed applications.
Maintaining persona consistency is paramount in the application of open-domain dialogue systems, as exemplified by models like ChatGPT. Despite significant advancements, the limited scale and diversity of current persona dialogue datasets remain challenges to achieving robust persona-consistent dialogue models. In this study, drawing inspiration from the success of large-scale pre-training, we introduce PPDS, an open-domain persona dialogue system that employs extensive generative pre-training on a persona dialogue dataset to enhance persona consistency. Specifically, we present a persona extraction model designed to autonomously and precisely generate vast persona dialogue datasets. Additionally, we unveil a pioneering persona augmentation technique to address the invalid persona bias inherent in the constructed dataset. Both quantitative and human evaluations consistently highlight the superior response quality and persona consistency of our proposed model, underscoring its effectiveness.