Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many subdirections such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages.To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction.Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations.Extensive experiments demonstrate our approach’s superior performance, achieving significant improvements over both conventional NLI models as well as large language models.Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference.Our code and dataset are available at CDCL-NLI-link.
The advancement of mobile GUI agents has opened new opportunities for automating tasks on mobile devices. Training these agents requires large-scale high-quality data, which is prohibitively expensive when relying on human labor. Given the vast population of global mobile phone users, if automated data collection from them becomes feasible, the resulting data volume and the subsequently trained mobile agents could reach unprecedented levels. Nevertheless, two major challenges arise: (1) extracting user instructions without human intervention and (2) utilizing distributed user data while preserving privacy.To tackle these challenges, we propose MobileA3gent, a collaborative framework that trains mobile GUI Agents using decentralized self-sourced data from diverse users. The framework comprises two components, each targeting a specific challenge: (1) Auto-Annotation, which enables the automatic collection of high-quality datasets during users’ routine phone usage with minimal cost. (2) FedVLM-A, which enhances federated VLM training under non-IID distributions by incorporating adapted global aggregation based on both episode-level and step-level variability. Extensive experiments prove that MobileA3gent achieves superior performance over traditional approaches at only 1% of the cost, highlighting its potential for real-world applications. Our code is publicly available at: https://anonymous.4open.science/r/MobileA3gent-Anonymous.
Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many sub-directions such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages. To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction. Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations. Extensive experiments demonstrate our approach”s superior performance, achieving significant improvements over both conventional NLI models as well as large language models. Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference. Our dataset and code are available at https://anonymous.4open.science/r/CDCL-NLI-637E/ for peer review.