Mais Alheraki


2025

pdf bib
BALSAM: A Platform for Benchmarking Arabic Large Language Models
Rawan Nasser Almatham | Kareem Mohamed Darwish | Raghad Al-Rasheed | Waad Thuwaini Alshammari | Muneera Alhoshan | Amal Almazrua | Asma Al Wazrah | Mais Alheraki | Firoj Alam | Preslav Nakov | Norah A. Alzahrani | Eman Albilali | Nizar Habash | Abdelrahman Mustafa El-Sheikh | Muhammad Elmallah | Hamdy Mubarak | Zaid Alyafeai | Mohamed Anwar | Haonan Li | Ahmed Abdelali | Nora Altwairesh | Maram Hasanain | Abdulmohsen Al-Thubaity | Shady Shehata | Bashar Alhafni | Injy Hamed | Go Inoue | Khalid N. Elmadani | Ossama Obeid | Fatima Haouari | Tamer Elsayed | Emad A. Alghamdi | Khalid Almubarak | Saied Alshahrani | Ola Aljareh | Safa Alajlan | Areej Alshaqarawi | Maryam Alshihri | Sultana Alghurabi | Atikah Alzeghayer | Afrah Altamimi | Abdullah Alfaifi | Abdulrahman M Alosaimy
Proceedings of The Third Arabic Natural Language Processing Conference

The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.

2024

pdf bib
Baleegh at KSAA-CAD 2024: Towards Enhancing Arabic Reverse Dictionaries
Mais Alheraki | Souham Meshoul
Proceedings of the Second Arabic Natural Language Processing Conference

The domain of reverse dictionaries (RDs), while advancing in languages like English and Chinese, remains underdeveloped for Arabic. This study attempts to explore a data-driven approach to enhance word retrieval processes in Arabic RDs. The research focuses on the ArabicNLP 2024 Shared Task, named KSAA-CAD, which provides a dictionary dataset of 39,214 word-gloss pairs, each with a corresponding target word embedding. The proposed solution aims to surpass the baseline performance by employing SOTA deep learning models and innovative data expansion techniques. The methodology involves enriching the dataset with contextually relevant examples, training a T5 model to align the words to their glosses in the space, and evaluating the results on the shared task metrics. We find that our model is closely aligned with the baseline performance on bertseg and bertmsa targets, however does not perform well on electra target, suggesting the need for further exploration.