This paper explores whether enhancing temporal reasoning capabilities in Large Language Models (LLMs) can improve the quality of timeline summarisation, the task of summarising long texts containing sequences of events, such as social media threads. We first introduce NarrativeReason, a novel dataset focused on temporal relationships among sequential events within narratives, distinguishing it from existing temporal reasoning datasets that primarily address pair-wise event relationships. Our approach then combines temporal reasoning with timeline summarisation through a knowledge distillation framework, where we first fine-tune a teacher model on temporal reasoning tasks and then distill this knowledge into a student model while simultaneously training it for the task of timeline summarisation. Experimental results demonstrate that our model achieves superior performance on out-of-domain mental health-related timeline summarisation tasks, which involve long social media threads with repetitions of events and a mix of emotions, highlighting the importance and generalisability of leveraging temporal reasoning to improve timeline summarisation.
Large language models (LLMs) have shown strong performance in many reasoning benchmarks. However, recent studies have pointed to memorization, rather than generalization, as one of the leading causes for such performance. LLMs, in fact, are susceptible to content variations, demonstrating a lack of robust planning or symbolic abstractions supporting their reasoning process. To improve reliability, many attempts have been made to combine LLMs with symbolic methods. Nevertheless, existing approaches fail to effectively leverage symbolic representations due to the challenges involved in developing reliable and scalable verification mechanisms. In this paper, we propose to overcome such limitations by synthesizing high-quality symbolic reasoning trajectories with stepwise pseudo-labels at scale via Monte Carlo estimation. A Process Reward Model (PRM) can be efficiently trained based on the synthesized data and then used to select more symbolic trajectories. The trajectories are then employed with Direct Preference Optimization (DPO) and Supervised Fine-Tuning (SFT) to improve logical reasoning and generalization. Our results on benchmarks (i.e., FOLIO and LogicAsker) show the effectiveness of the proposed method with gains on frontier and open-weight models. Moreover, additional experiments on claim verification data reveal that fine-tuning on the generated symbolic reasoning trajectories enhances out-of-domain generalizability, suggesting the potential impact of the proposed method in enhancing planning and logical reasoning.
Although LLMs have shown great performance on Mathematics and Coding related reasoning tasks, the reasoning capabilities of LLMs regarding other forms of reasoning are still an open problem. Here, we examine the issue of reasoning from the perspective of claim verification. We propose a framework designed to break down any claim paired with evidence into atomic reasoning types that are necessary for verification. We use this framework to create RECV, the first claim verification benchmark, incorporating real-world claims, to assess the deductive and abductive reasoning capabilities of LLMs. The benchmark comprises of three datasets, covering reasoning problems of in creasing complexity. We evaluate three state of-the-art proprietary LLMs under multiple prompt settings. Our results show that while LLMs can address deductive reasoning prob lems, they consistently fail in cases of abductive reasoning. Moreover, we observe that enhancing LLMs with rationale generation is not always beneficial. Nonetheless, we find that generated rationales are semantically similar to those provided by humans, especially in deduc tive reasoning cases.
Script diversity presents a challenge to Multilingual Language Models (MLLM) by reducing lexical overlap among closely related languages. Therefore, transliterating closely related languages that use different writing scripts to a common script may improve the downstream task performance of MLLMs. We empirically measure the effect of transliteration on MLLMs in this context. We specifically focus on the Indic languages, which have the highest script diversity in the world, and we evaluate our models on the IndicGLUE benchmark. We perform the Mann-Whitney U test to rigorously verify whether the effect of transliteration is significant or not. We find that transliteration benefits the low-resource languages without negatively affecting the comparatively high-resource languages. We also measure the cross-lingual representation similarity of the models using centered kernel alignment on parallel sentences from the FLORES-101 dataset. We find that for parallel sentences across different languages, the transliteration-based model learns sentence representations that are more similar.