2025
pdf
bib
abs
Stance Detection on Nigerian 2023 Election Tweets Using BERT: A Low-Resource Transformer-Based Approach
Mahmoud Ahmad
|
Habeebah Kakudi
Proceedings of the 6th Workshop on Computational Approaches to Discourse, Context and Document-Level Inferences (CODI 2025)
This paper investigates stance detection on Nigerian 2023 election tweets by comparing transformer-based and classical machine learning models. A balanced dataset of 2,100 annotated tweets was constructed, and BERT-base-uncased was fine-tuned to classify stances into Favor, Neutral, and Against. The model achieved 98.1% accuracy on an 80/20 split and an F1-score of 96.9% under 5-fold cross-validation. Baseline models such as Naïve Bayes, Logistic Regression, Random Forest, and SVM were also evaluated, with SVM achieving 97.6% F1. While classical methods remain competitive on curated datasets, BERT proved more robust in handling noisy, sarcastic, and ambiguous text, making it better suited for real-world applications in low-resource African NLP contexts.
2024
pdf
bib
abs
HausaNLP at SemEval-2024 Task 1: Textual Relatedness Analysis for Semantic Representation of Sentences
Saheed Abdullahi Salahudeen
|
Falalu Ibrahim Lawan
|
Yusuf Aliyu
|
Amina Abubakar
|
Lukman Aliyu
|
Nur Rabiu
|
Mahmoud Ahmad
|
Aliyu Rabiu Shuaibu
|
Alamin Musa
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Semantic Text Relatedness (STR), a measure of meaning similarity between text elements, has become a key focus in the field of Natural Language Processing (NLP). We describe SemEval-2024 task 1 on Semantic Textual Relatedness featuring three tracks: supervised learning, unsupervised learning and cross-lingual learning across African and Asian languages including Afrikaans, Algerian Arabic, Amharic, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. Our goal is to analyse the semantic representation of sentences textual relatedness trained on mBert, all-MiniLM-L6-v2 and Bert-Based-uncased. The effectiveness of these models is evaluated using the Spearman Correlation metric, which assesses the strength of the relationship between paired data. The finding reveals the viability of transformer models in multilingual STR tasks.
pdf
bib
abs
Arewa NLP’s Participation at WMT24
Mahmoud Ahmad
|
Auwal Khalid
|
Lukman Aliyu
|
Babangida Sani
|
Mariya Abdullahi
Proceedings of the Ninth Conference on Machine Translation
This paper presents the work of our team, “ArewaNLP,” for the WMT 2024 shared task. The paper describes the system submitted to the Ninth Conference on Machine Translation (WMT24). We participated in the English-Hausa text-only translation task. We fine-tuned the OPUS-MT-en-ha transformer model and our submission achieved competitive results in this task. We achieve a BLUE score of 27.76, 40.31 and 5.85 on the Development Test, Evaluation Test and Challenge Test respectively.