Luis A. Lastras


2025

pdf bib
NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
Kinjal Basu | Ibrahim Abdelaziz | Kiran Kate | Mayank Agarwal | Maxwell Crouse | Yara Rizk | Kelsey Bradford | Asim Munawar | Sadhana Kumaravel | Saurabh Goyal | Xin Wang | Luis A. Lastras | Pavan Kapanipathi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The resurgence of autonomous agents built using large language models (LLMs) to solve complex real-world tasks has brought increased focus on LLMs’ fundamental ability of tool or function calling. At the core of these agents, an LLM must plan, execute, and respond using external tools, APIs, and custom functions. Research on tool calling has gathered momentum, but evaluation benchmarks and datasets representing the complexity of the tasks have lagged behind. In this work, we focus on one such complexity, nested sequencing, with the goal of extending existing benchmarks and evaluation. Specifically, we present NESTFUL, a benchmark to evaluate LLMs on nested sequences of API calls, i.e., sequences where the output of one API call is passed as input to a subsequent call. NESTFUL contains 1800+ nested sequences where all the function calls are executable. Experimental results on a variety of models show that the best-performing model (GPT-4o) achieves a full sequence match accuracy of 28% and a win-rate of 60%, necessitating a large scope for improvement in the nested sequencing aspect of function calling. Our analysis of these results provides possible future research directions for the community, in addition to a benchmark to track progress.

2024

pdf bib
Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks
Ibrahim Abdelaziz | Kinjal Basu | Mayank Agarwal | Sadhana Kumaravel | Matthew Stallone | Rameswar Panda | Yara Rizk | G P Shrivatsa Bhargav | Maxwell Crouse | Chulaka Gunasekara | Shajith Ikbal | Sachindra Joshi | Hima Karanam | Vineet Kumar | Asim Munawar | Sumit Neelam | Dinesh Raghu | Udit Sharma | Adriana Meza Soria | Dheeraj Sreedhar | Praveen Venkateswaran | Merve Unuvar | David Daniel Cox | Salim Roukos | Luis A. Lastras | Pavan Kapanipathi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

An emergent research trend explores the use of Large Language Models (LLMs) as the backbone of agentic systems (e.g., SWE-Bench, Agent-Bench). To fulfill LLMs’ potential as autonomous agents, they must be able to identify, call, and interact with a variety of external tools and application program interfaces (APIs). This capability of LLMs, commonly termed function calling, leads to a myriad of advantages such as access to current and domain-specific information in databases and the outsourcing of tasks that can be reliably performed by tools. In this work, we introduce Granite-20B-FunctionCalling, a model trained using a multi-task training approach on seven fundamental tasks encompassed in function calling. Our comprehensive evaluation on multiple out-of-domain datasets, which compares Granite-20B-FunctionCalling to more than 15 other best proprietary and open models, shows that Granite-20B-FunctionCalling has better generalizability on multiple tasks across seven different evaluation benchmarks. Moreover, Granite-20B-FunctionCalling shows the best performance among all open models and ranks among the top on the Berkeley Function Calling Leaderboard (BFCL).