Lucas Resck
2025
Explainability and Interpretability of Multilingual Large Language Models: A Survey
Lucas Resck
|
Isabelle Augenstein
|
Anna Korhonen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multilingual large language models (MLLMs) demonstrate state-of-the-art capabilities across diverse cross-lingual and multilingual tasks. Their complex internal mechanisms, however, often lack transparency, posing significant challenges in elucidating their internal processing of multilingualism, cross-lingual transfer dynamics and handling of language-specific features. This paper addresses this critical gap by presenting a survey of current explainability and interpretability methods specifically for MLLMs. To our knowledge, it is the first comprehensive review of its kind. Existing literature is categorised according to the explainability techniques employed, the multilingual tasks addressed, the languages investigated and available resources. The survey further identifies key challenges, distils core findings and outlines promising avenues for future research within this rapidly evolving domain.
2024
Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales
Lucas Resck
|
Marcos M. Raimundo
|
Jorge Poco
Findings of the Association for Computational Linguistics: NAACL 2024
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models. While these methods can reflect the model’s reasoning, they may not align with human intuition, making the explanations not plausible. In this work, we present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models. This incorporation enhances the plausibility of post-hoc explanations while preserving their faithfulness. Our approach is agnostic to model architectures and explainability methods. We introduce the rationales during model training by augmenting the standard cross-entropy loss with a novel loss function inspired by contrastive learning. By leveraging a multi-objective optimization algorithm, we explore the trade-off between the two loss functions and generate a Pareto-optimal frontier of models that balance performance and plausibility. Through extensive experiments involving diverse models, datasets, and explainability methods, we demonstrate that our approach significantly enhances the quality of model explanations without causing substantial (sometimes negligible) degradation in the original model’s performance.