Liuyu Xiang
2025
Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models
Shuodi Liu
|
Yingzhuo Liu
|
Zi Wang
|
Yusheng Wang
|
Huijia Wu
|
Liuyu Xiang
|
Zhaofeng He
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.
2023
An Adaptive Prompt Generation Framework for Task-oriented Dialogue System
Jun Gao
|
Liuyu Xiang
|
Huijia Wu
|
Han Zhao
|
Yiqi Tong
|
Zhaofeng He
Findings of the Association for Computational Linguistics: EMNLP 2023
The de facto way of utilizing black-box large language models (LLMs) to perform various downstream tasks is prompting. However, obtaining suitable prompts for specific tasks is still a challenging problem. While existing LLM-based methods demonstrate promising performance in task-oriented dialogue (TOD) task, they often require manual adjustment in prompt selection, or focus solely on dialogue understanding or generation. To address these issues, we propose an adaptive prompt generation framework to fully unleash the potential of LLMs for the comprehensive TOD system. Firstly, we design a trainable slot generator (TSG) that can generate domain and slot information in the belief state, which serves as prior knowledge for subsequent prompt generation. Next, we propose an adaptive prompt generator (APG) that utilizes the prior knowledge to generate prompts for the LLM, deriving the belief state and system response of the dialogue for evaluation. Finally, we evaluate our framework on the MultiWOZ 2.0 dataset. Extensive experiments demonstrate that our method outperforms existing methods. Our code and data will be released.