Lisi Chen


2025

pdf bib
CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis
Ruixiang Feng | Shen Gao | Xiuying Chen | Lisi Chen | Shuo Shang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often exhibit a specific cultural bias, neglecting the values and linguistic diversity of low-resource regions. This cultural bias not only undermines universal equality but also risks reinforcing stereotypes and perpetuating discrimination. To address this, we propose CulFiT, a novel culturally-aware training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity. Our approach synthesizes diverse cultural-related questions, constructs critique data in multiple culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units for interpretable evaluation. We also introduce GlobalOpinionQA, a multilingual open-ended question-answering dataset designed to evaluate culturally-aware responses in a global context. Extensive experiments on three existing benchmarks and our GlobalOpinionQA demonstrate that CulFiT achieves state-of-the-art open-source model performance in cultural alignment and general reasoning.

pdf bib
V-VAE: A Variational Auto Encoding Framework Towards Fine-Grained Control over Human-Like Chat
Qi Lin | Weikai Xu | Lisi Chen | Bin Dai
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

With the continued proliferation of Large Language Model (LLM) based chatbots, there is a growing demand for generating responses that are not only linguistically fluent but also consistently aligned with persona-specific traits in conversations. However, existing role-play and persona-based chat approaches rely heavily on static role descriptions, coarse-grained signal space, and low-quality synthetic data, which fail to capture dynamic fine-grained details in human-like chat. Human-like chat requires modeling subtle latent traits, such as emotional tone, situational awareness, and evolving personality, which are difficult to predefine and cannot be easily learned from synthetic or distillation-based data. To address these limitations, we propose a Verbal Variational Auto-Encoding (V-VAE) framework, containing a variational auto-encoding module and fine-grained control space which dynamically adapts dialogue behaviour based on fine-grained, interpretable latent variables across talking style, interaction patterns, and personal attributes. We also construct a high-quality dataset, HumanChatData, and benchmark HumanChatBench to address the scarcity of high-quality data in the human-like domain. Experiments show that LLMs based on V-VAE consistently outperform standard baselines on HumanChatBench and DialogBench, which further demonstrates the effectiveness of V-VAE and HumanChatData.