2025
pdf
bib
abs
Embedding-Informed Adaptive Retrieval-Augmented Generation of Large Language Models
Chengkai Huang
|
Yu Xia
|
Rui Wang
|
Kaige Xie
|
Tong Yu
|
Julian McAuley
|
Lina Yao
Proceedings of the 31st International Conference on Computational Linguistics
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks. However, it was observed by previous works that retrieval is not always helpful, especially when the LLM is already knowledgable on the query to answer. Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM. Previous works of ARAG either require accessing the pre-training corpus or prompting with additional model inferences. Aiming to avoid such drawbacks, we propose to determine whether the model is knowledgeable on a query via inspecting the (contextualized) pre-trained token embeddings of LLMs. We hypothesize that such embeddings capture rich information on the model’s intrinsic knowledge base, which enables an efficient way of judging the necessity to retrieve from an external corpus. Extensive experiments demonstrate our ARAG approach’s superior performance across various benchmarks.
pdf
bib
abs
SAND: Boosting LLM Agents with Self-Taught Action Deliberation
Yu Xia
|
Yiran Jenny Shen
|
Junda Wu
|
Tong Yu
|
Sungchul Kim
|
Ryan A. Rossi
|
Lina Yao
|
Julian McAuley
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Language Model (LLM) agents are commonly tuned with supervised finetuning on ReAct-style expert trajectories or preference optimization over pairwise rollouts. Most of these methods focus on imitating specific expert behaviors or promoting chosen reasoning thoughts and actions over rejected ones. However, without reasoning and comparing over alternatives actions, LLM agents finetuned with these methods may over-commit towards seemingly plausible but suboptimal actions due to limited action space exploration. To address this, in this paper we propose Self-taught ActioN Deliberation (SAND) framework, enabling LLM agents to explicitly deliberate over candidate actions before committing to one. To tackle the challenges of when and what to deliberate given large action space and step-level action evaluation, we incorporate self-consistency action sampling and execution-guided action critique to help synthesize step-wise action deliberation thoughts using the base model of the LLM agent. In an iterative manner, the deliberation trajectories are then used to finetune the LLM agent itself. Evaluating on two representative interactive agent tasks, SAND achieves an average 20% improvement over initial supervised finetuning and also outperforms state-of-the-art agent tuning approaches.
pdf
bib
abs
CoMMIT: Coordinated Multimodal Instruction Tuning
Xintong Li
|
Junda Wu
|
Tong Yu
|
Rui Wang
|
Yu Wang
|
Xiang Chen
|
Jiuxiang Gu
|
Lina Yao
|
Julian McAuley
|
Jingbo Shang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning.
pdf
bib
abs
GUI Agents: A Survey
Dang Nguyen
|
Jian Chen
|
Yu Wang
|
Gang Wu
|
Namyong Park
|
Zhengmian Hu
|
Hanjia Lyu
|
Junda Wu
|
Ryan Aponte
|
Yu Xia
|
Xintong Li
|
Jing Shi
|
Hongjie Chen
|
Viet Dac Lai
|
Zhouhang Xie
|
Sungchul Kim
|
Ruiyi Zhang
|
Tong Yu
|
Mehrab Tanjim
|
Nesreen K. Ahmed
|
Puneet Mathur
|
Seunghyun Yoon
|
Lina Yao
|
Branislav Kveton
|
Jihyung Kil
|
Thien Huu Nguyen
|
Trung Bui
|
Tianyi Zhou
|
Ryan A. Rossi
|
Franck Dernoncourt
Findings of the Association for Computational Linguistics: ACL 2025
Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.
2024
pdf
bib
abs
Speaking in Wavelet Domain: A Simple and Efficient Approach to Speed up Speech Diffusion Model
Xiangyu Zhang
|
Daijiao Liu
|
Hexin Liu
|
Qiquan Zhang
|
Hanyu Meng
|
Leibny Paola Garcia Perera
|
EngSiong Chng
|
Lina Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recently, Denoising Diffusion Probabilistic Models (DDPMs) have attained leading performances across a diverse range of generative tasks. However, in the field of speech synthesis, although DDPMs exhibit impressive performance, their prolonged training duration and substantial inference costs hinder practical deployment. Existing approaches primarily focus on enhancing inference speed, while approaches to accelerate training—a key factor in the costs associated with adding or customizing voices—often necessitate complex modifications to the model, compromising their universal applicability. To address the aforementioned challenges, we propose an inquiry: is it possible to enhance the training/inference speed and performance of DDPMs by modifying the speech signal itself? In this paper, we double the training and inference speed of Speech DDPMs by simply redirecting the generative target to the wavelet domain. This method not only achieves comparable or superior performance to the original model in speech synthesis tasks but also demonstrates its versatility. By investigating and utilizing different wavelet bases, our approach proves effective not just in speech synthesis, but also in speech enhancement.
pdf
bib
abs
Personalized Federated Learning for Text Classification with Gradient-Free Prompt Tuning
Rui Wang
|
Tong Yu
|
Ruiyi Zhang
|
Sungchul Kim
|
Ryan Rossi
|
Handong Zhao
|
Junda Wu
|
Subrata Mitra
|
Lina Yao
|
Ricardo Henao
Findings of the Association for Computational Linguistics: NAACL 2024
In this paper, we study personalized federated learning for text classification with Pretrained Language Models (PLMs). We identify two challenges in efficiently leveraging PLMs for personalized federated learning: 1) Communication. PLMs are usually large in size, e.g., with hundreds of millions of parameters, inducing huge communication cost in a federated setting. 2) Local Training. Training with PLMs generally requires back-propagation, during which memory consumption can be several times that of the forward-propagation. This may not be affordable when the PLMs are trained locally on the clients that are resource constrained, e.g., mobile devices with limited access to memory resources. Additionally, the proprietary PLMs can be provided as concealed APIs, for which the back-propagation operations may not be available. In solving these, we propose a training framework that includes an approach of discrete local search for gradient-free local training, along with a compression mechanism inspired from the linear word analogy that allows communicating with discretely indexed tokens, thus significantly reducing the communication cost. Experiments show that our gradient-free framework achieves superior performance compared with baselines.