Liang Song


2025

pdf bib
Extracting and Combining Abilities For Building Multi-lingual Ability-enhanced Large Language Models
Zhipeng Chen | Kun Zhou | Liang Song | Xin Zhao | Bingning Wang | Weipeng Chen | Ji-Rong Wen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multi-lingual ability transfer has become increasingly important for the broad application of large language models (LLMs). Existing work highly relies on training with the multi-lingual ability-related data, which may not be available for low-resource languages. To solve it, we propose a **M**ulti-lingual **A**bilities **E**xtraction and **C**ombination approach, named as **MAEC**. Our key idea is to decompose and extract language-agnostic ability-related weights from LLMs, and combine them across different languages by simple addition and subtraction operations without training. Specifically, our MAEC consists of the extraction and combination stages. In the extraction stage, we firstly locate key neurons that are highly related to specific abilities, and then employ them to extract the transferable ability-related weights. In the combination stage, we further select the ability-related tensors that mitigate the linguistic effects, and design a combining strategy based on them and the language-specific weights, to build the multi-lingual ability-enhanced LLM. To assess the effectiveness of our approach, we conduct extensive experiments on LLaMA-3 8B on mathematical and scientific tasks in both high-resource and low-resource lingual scenarios. Experiment results have shown that MAEC can effectively and efficiently extract and combine the advanced abilities, achieving **comparable performance with PaLM**. We will publicly release our code and data.

2024

pdf bib
MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic
Yuyan Zhou | Liang Song | Bingning Wang | Weipeng Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The advent of large language models (LLMs) like GPT-4 has catalyzed the exploration of multi-task learning (MTL), in which a single model demonstrates proficiency across diverse tasks. Task arithmetic has emerged as a cost-effective approach for MTL. It enables performance enhancement across multiple tasks by adding their corresponding task vectors to a pre-trained model. However, the current lack of a method that can simultaneously achieve optimal performance, computational efficiency, and data privacy limits their application to LLMs. In this paper, we propose Model Exclusive Task Arithmetic for merging GPT-scale models (MetaGPT) which formalizes the objective of model merging into a multi-task learning framework, aiming to minimize the average loss difference between the merged model and each individual task model. Since data privacy limits the use of multi-task training data, we leverage LLMs’ local linearity and task vectors’ orthogonality to separate the data term and scaling coefficients term and derive a model-exclusive task arithmetic method. Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs. Extensive experiments demonstrate that MetaGPT leads to improvement of task arithmetic and achieves state-of-the-art performance on multiple tasks.