Leon Zhou


2025

pdf bib
Alpha-GPT: Human-AI Interactive Alpha Mining for Quantitative Investment
Saizhuo Wang | Hang Yuan | Leon Zhou | Lionel Ni | Heung-Yeung Shum | Jian Guo
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

One of the most important tasks in quantitative investment research is mining new alphas (effective trading signals or factors). Traditional alpha mining methods, either hand-crafted factor synthesis or algorithmic factor mining (e.g., search with genetic programming), have inherent limitations, especially in implementing the ideas of quant researchers. In this work, we propose a new alpha mining paradigm by introducing human-AI interaction, and a novel prompt engineering algorithmic framework to implement this paradigm by leveraging the power of large language models. Moreover, we develop Alpha-GPT, a new interactive alpha mining system framework that provides a heuristic way to “understand” the ideas of quant researchers and outputs creative, insightful, and effective alphas. We demonstrate the effectiveness and advantage of Alpha-GPT via a number of alpha mining experiments. In particular, we evaluated Alpha-GPT’s performance in the WorldQuant International Quant Championship, where it demonstrated results comparable to those of top-performing human participants, ranking among top-10 over 41000 teams worldwide. These findings suggest Alpha-GPT’s significant potential in generating highly effective alphas that may surpass human capabilities in quantitative investment strategies.

2023

pdf bib
Human-in-the-loop Schema Induction
Tianyi Zhang | Isaac Tham | Zhaoyi Hou | Jiaxuan Ren | Leon Zhou | Hainiu Xu | Li Zhang | Lara J. Martin | Rotem Dror | Sha Li | Heng Ji | Martha Palmer | Susan Windisch Brown | Reece Suchocki | Chris Callison-Burch
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction (IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.